Part II Problems

Problem 1: [Laplace transform] (a) Suppose that $F(s)$ is the Laplace transform of $f(t)$, and let $a>0$. Find a formula for the Laplace transform of $g(t)=f(a t)$ in terms of $F(s)$, by using the integral definition and making a change of variable. Verify your formula by using formulas and rules to compute both $\mathcal{L}(f(t))$ and $\mathcal{L}(f($ at $))$ with $f(t)=t^{n}$.
(b) Use your calculus skills: Show that if $h(t)=f(t) * g(t)$ then $H(s)=F(s) G(s)$. Do this by writing $F(s)=\int_{0}^{\infty} f(x) e^{-s x} d x$ and $G(s)=\int_{0}^{\infty} g(y) e^{-s y} d y$; expressing the product as a double integral; and changing coordinates using $x=t-\tau, y=\tau$.
(c) Use the integral definition to find the Laplace transform of the function $f(t)$ with $f(t)=$ 1 for $0<t<1$ and $f(t)=0$ for $t>0$. What is the region of convergence of the integral?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

