Definition of Laplace Transform

1. Definition of Laplace Transform

The Laplace transform of a function $f(t)$ of a real variable t is another function depending on a new variable s, which is in general complex. We will denote the Laplace transform of f by $\mathcal{L} f$. It is defined by the integral

$$
\begin{equation*}
(\mathcal{L} f)(s)=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t \tag{1}
\end{equation*}
$$

for all values of s for which the integral converges.
There are a few things to note.

- $\mathcal{L} f$ is only defined for those values of s for which the improper integral on the right-hand side of (1) converges.
- We will allow s to be complex.
- As with convolution the use of 0^{-}, in the definition (1) is necessary to accomodate generalized functions containing $\delta(t)$. Many textbooks do not do this carefully, and hence their definition of the Laplace transform is not consistent with the properties they assert. In those cases where 0^{-}isn't needed we will use the less precise form

$$
\begin{equation*}
(\mathcal{L} f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{1'}
\end{equation*}
$$

- Also, as with convolution, the limits of integration mean that the Laplace transform is only concerned with functions on $\left(0^{-}, \infty\right)$.

2. Notation, $F(s)$

We will adopt the following conventions:

1. Writing $(\mathcal{L} f)(s)$ can be cumbersome so we will often use an uppercase letter to indicate the Laplace transform of the corresponding lowercase function:

$$
(\mathcal{L} f)(s)=F(s), \quad(\mathcal{L} g)(s)=G(s), \text { etc. }
$$

For example, in the formula

$$
\mathcal{L}\left(f^{\prime}\right)=s F(s)-f\left(0^{-}\right)
$$

it is understood that we mean $F(s)=\mathcal{L}(f)$.
2. If our function doesn't have a name we will use the formula instead. For example, the Laplace transform of the function t^{2} is written $\mathcal{L}\left(t^{2}\right)(s)$ or more simply $\mathcal{L}\left(t^{2}\right)$.
3. If in some context we need to modify $f(t)$, e.g. by applying a translation by a number a, we can write $\mathcal{L}(f(t-a))$ for the Laplace transform of this translation of f.
4. You've already seen several different ways to use parentheses. Sometimes we will even drop them altogether. So, if $f(t)=t^{2}$ then the following all mean the same thing

$$
(\mathcal{L} f)(s)=F(s)=\mathcal{L} f(s)=\mathcal{L}(f(t))(s)=\mathcal{L}\left(t^{2}\right)(s) ; \quad \mathcal{L} f=F=\mathcal{L}\left(t^{2}\right)
$$

3. First Examples

For the first few examples we will explicitly use a limit for the improper integral. Soon we will do this implicitly without comment.
Example 1. Let $f(t)=1$, find $F(s)=\mathcal{L} f(s)$.
Solution. Using the definition (1^{\prime}) we have

$$
\left.\left.\mathcal{L}(1)=F(s)=\int_{0}^{\infty} e^{-s t} d t=\lim _{T \rightarrow \infty} \frac{e^{-s t}}{-s}\right]_{0}^{T}=\lim _{T \rightarrow \infty} \frac{e^{-s T}-1}{-s}\right]_{0}^{T} .
$$

The limit depends on whether s is positive or negative.

$$
\lim _{T \rightarrow \infty} e^{-s T}= \begin{cases}0 & \text { if } s>0 \\ \infty & \text { if } s<0\end{cases}
$$

Therefore,

$$
\mathcal{L}(1)=F(s)= \begin{cases}\frac{1}{s} & \text { if } s>0 \\ \text { diverges } & \text { if } s \leq 0\end{cases}
$$

(We didn't actually compute the case $s=0$, but it is easy to see it diverges.)
Example 2. Compute $\mathcal{L}\left(e^{a t}\right)$.
Solution. Using the definition (1') we have

$$
\left.\left.\mathcal{L}\left(e^{a t}\right)=\int_{0}^{\infty} e^{a t} e^{-s t} d t=\lim _{T \rightarrow \infty} \frac{e^{(a-s) t}}{a-s}\right]_{0}^{T}=\lim _{T \rightarrow \infty} \frac{e^{(a-s) T}-1}{a-s}\right]_{0}^{T}
$$

The limit depends on whether $s>a$ or $s<a$.

$$
\lim _{T \rightarrow \infty} e^{(a-s) T}= \begin{cases}0 & \text { if } s>a \\ \infty & \text { if } s<a\end{cases}
$$

Therefore,

$$
\mathcal{L}\left(e^{a t}\right)= \begin{cases}\frac{1}{s-a} & \text { if } s>a \\ \text { diverges } & \text { if } s \leq a\end{cases}
$$

(We didn't actually compute the case $s=a$, but it is easy to see it diverges.)
We have the first two entries in our table of Laplace transforms:

$$
\begin{array}{lll}
f(t)=1 & \Rightarrow F(s)=1 / s, & s>0 \\
f(t)=e^{a t} & \Rightarrow F(s)=1 /(s-a), & s>a .
\end{array}
$$

4. Linearity

You will not be surprised to learn that the Laplace transform is linear. For functions f, g and constants c_{1}, c_{2}

$$
\mathcal{L}\left(c_{1} f+c_{2} g\right)=c_{1} \mathcal{L}(f)+c_{2} \mathcal{L}(g)
$$

This is clear from the definition (1) of \mathcal{L} and the linearity of integration.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

