More Entries for the Laplace Table

In this note we will add some new entries to the table of Laplace transforms.

1. $\mathcal{L}(\cos (\omega t))=\frac{s}{s^{2}+\omega^{2}}$, with region of convergence $\operatorname{Re}(s)>0$.
2. $\mathcal{L}(\sin (\omega t))=\frac{\omega}{s^{2}+\omega^{2}}$, with region of convergence $\operatorname{Re}(s)>0$.

Proof: We already know that $\mathcal{L}\left(e^{a t}\right)=1 /(s-a)$. Using this and Euler's formula for the complex exponential, we obtain

$$
\mathcal{L}(\cos (\omega t)+i \sin (\omega t))=\mathcal{L}\left(e^{i \omega t}\right)=\frac{1}{s-i \omega}=\frac{1}{s-i \omega} \cdot \frac{s+i \omega}{s+i \omega}=\frac{s+i \omega}{s^{2}+\omega^{2}} .
$$

Taking the real and imaginary parts gives us the formulas.

$$
\begin{aligned}
\mathcal{L}(\cos (\omega t)) & =\operatorname{Re}\left(\mathcal{L}\left(e^{i \omega t}\right)\right)=s /\left(s^{2}+\omega^{2}\right) \\
\mathcal{L}(\sin (\omega t)) & =\operatorname{Im}\left(\mathcal{L}\left(e^{i \omega t}\right)\right)=\omega /\left(s^{2}+\omega^{2}\right)
\end{aligned}
$$

The region of convergence follow from the fact that $\cos (\omega t)$ and $\sin (\omega t)$ both have exponential order 0 .

Another approach would have been to use integration by parts to compute the transforms directly from the Laplace integral.
3. For a positive integer $n, \mathcal{L}\left(t^{n}\right)=n!/ s^{n+1}$. The region of convergence is $\operatorname{Re}(s)>0$.
Proof: We start with $n=1$.

$$
\mathcal{L}(t)=\int_{0}^{\infty} t e^{-s t} d t
$$

Using integration by parts:

$$
\left.\left.\begin{array}{ll}
u=t & d v=e^{-s t} \\
d u=1 & v=e^{-s t} /(-s)
\end{array}\right\} \mathcal{L}(t)=-\frac{t e^{-s t}}{s}\right]_{0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t
$$

For $\operatorname{Re}(s)>0$ the first term is 0 and the second term is $\frac{1}{s} \mathcal{L}(1)=1 / s^{2}$. Thus, $\mathcal{L}(t)=1 / s^{2}$.

Next let's do $n=2$:

$$
\mathcal{L}\left(t^{2}\right)=\int_{0}^{\infty} t^{2} e^{-s t} d t
$$

Again using integration by parts:

$$
\left.\left.\begin{array}{ll}
u=t^{2} & d v=e^{-s t} \\
d u=2 t & v=e^{-s t} /(-s)
\end{array}\right\} \mathcal{L}\left(t^{2}\right)=-\frac{t^{2} e^{-s t}}{s}\right]_{0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} 2 t e^{-s t} d t .
$$

For $\operatorname{Re}(s)>0$ the first term is 0 and the second term is $\frac{1}{s} \mathcal{L}(2 t)=2 / s^{3}$. Thus, $\mathcal{L}\left(t^{2}\right)=2 / s^{3}$.

We can see the pattern: there is a reduction formula for

$$
\mathcal{L}\left(t^{n}\right)=\int_{0}^{\infty} t^{n} e^{-s t} d t .
$$

Integration by parts:

$$
\left.\left.\begin{array}{ll}
u=t^{n} & d v=e^{-s t} \\
d u=n t^{n-1} & v=e^{-s t} /(-s)
\end{array}\right\} \mathcal{L}\left(t^{n}\right)=-\frac{t^{n} e^{-s t}}{s}\right]_{0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} n t^{n-1} e^{-s t} d t .
$$

For $\operatorname{Re}(s)>0$ the first term is 0 and the second term is $\frac{1}{s} \mathcal{L}\left(n t^{n-1}\right)$.
Thus, $\mathcal{L}\left(t^{n}\right)=\frac{n}{s} \mathcal{L}\left(t^{n-1}\right)$.
Thus we have

$$
\begin{array}{ll}
\mathcal{L}\left(t^{3}\right) & =\frac{3}{s} \mathcal{L}\left(t^{2}\right)=\frac{3 \cdot 2}{s^{4}}=\frac{3!}{s^{4}} \\
\mathcal{L}\left(t^{4}\right) & =\frac{4}{s} \mathcal{L}\left(t^{3}\right)=\frac{4 \cdot 3!}{s^{5}}=\frac{4!}{s^{5}} \\
\ldots \\
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}} . &
\end{array}
$$

4. (s-shift formula) If z is any complex number and $f(t)$ is any function then

$$
\mathcal{L}\left(e^{z t} f(t)\right)=F(s-z) .
$$

As usual we write $F(s)=\mathcal{L}(f)(s)$. If the region of convergence for $\mathcal{L}(f)$ is $\operatorname{Re}(s)>a$ then the region of convergence for $\mathcal{L}\left(e^{z t} f(t)\right)$ is $\operatorname{Re}(s)>\operatorname{Re}(z)+a$.
Proof: We simply calculate

$$
\begin{gathered}
\mathcal{L}\left(e^{z t} f(t)\right)=\int_{0}^{\infty} e^{z t} f(t) e^{-s t} d t \\
=\int_{0}^{\infty} f(t) e^{-(s-z) t} d t \\
=F(s-z)
\end{gathered}
$$

Example. Find the Laplace transform of $e^{-t} \cos (3 t)$.
Solution. We could do this by using Euler's formula to write

$$
e^{-t} \cos (3 t)=(1 / 2)\left(e^{(-1+3 i) t}+e^{(-1-3 i) t}\right)
$$

but it's even easier to use the s-shift formula with $z=-1$, which gives

$$
\mathcal{L}\left(e^{-t} f(t)\right)=F(s+1)
$$

where here $f(t)=\cos (3 t)$, so that $F(s)=s /\left(s^{2}+9\right)$. Shifting s by -1 according to the s-shift formula gives

$$
\mathcal{L}\left(e^{-t} \cos (3 t)\right)=F(s+1)=\frac{s+1}{(s+1)^{2}+9} .
$$

We record two important cases of the s-shift formula:
4a) $\mathcal{L}\left(e^{z t} \cos (\omega t)\right)=\frac{s-z}{(s-z)^{2}+\omega^{2}}$
4b) $\mathcal{L}\left(e^{z t} \sin (\omega t)\right)=\frac{\omega}{(s-z)^{2}+\omega^{2}}$.

Consistency.

It is always useful to check for consistency among our various formulas:

1. We have $\mathcal{L}(1)=1 / s$, so the s-shift formula gives $\mathcal{L}\left(e^{z t} \cdot 1\right)=1 /(s-z)$. This matches our formula for $\mathcal{L}\left(e^{z t}\right)$.
2. We have $\mathcal{L}\left(t^{n}\right)=n!/ s^{n+1}$. If $n=1$ we have $\mathcal{L}\left(t^{0}\right)=0!/ s=1 / s$. This matches our formula for $\mathcal{L}(1)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

