Part II Problems

Problem 1: [Periodic solutions] Let g(t) be the function which is periodic of period 2π , and such that g(t) = t for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ and $g(t) = \pi - t$ for $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$.

(a) Find a periodic solution to $\ddot{x} + \omega_0^2 x = g(t)$ (if there is one).

(b) For what (positive) values of ω_0 are there no periodic solution?

(c) Write ω_r for the smallest number you found in (b). For ω_0 just less than ω_r , what is the solution like, approximately? How about for ω_0 just larger than ω_r ?

(d) For what values of ω_0 are there more than one periodic solution?

(e) For the values of ω_0 found in (d), are *all* solutions to $\ddot{x} + \omega_0^2 x = g(t)$ periodic?

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.