Part II Problems and Solutions

Problem 1: [Periodic solutions] Let g(t) be the function which is periodic of period 2π , and such that g(t) = t for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ and $g(t) = \pi - t$ for $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$.

(a) Find a periodic solution to $\ddot{x} + \omega_0^2 x = g(t)$ (if there is one).

(b) For what (positive) values of ω_0 are there no periodic solution?

(c) Write ω_r for the smallest number you found in (b). For ω_0 just less than ω_r , what is the solution like, approximately? How about for ω_0 just larger than ω_r ?

(d) For what values of ω_0 are there more than one periodic solution?

(e) For the values of ω_0 found in (d), are all solutions to $\ddot{x} + \omega_0^2 x = g(t)$ periodic?

Solution: (a) Using the integral formulas for the coefficients as usual we first calculate the Fourier series for g(t). The result is

$$g(t) = \frac{4}{\pi} \left(\sin(t) - \frac{1}{3^2} \sin(3t) + \frac{1}{5^2} \sin(5t) - \cdots \right).$$

By superposition and the fact that

$$\ddot{x} + \omega_0^2 x = A \sin(\omega t)$$
 has solution $A \frac{\sin(\omega t)}{\omega_0^2 - \omega^2}$

we find that a solution to $\ddot{x} + \omega_0^2 x = g(t)$ is given by

$$x_p = \frac{4}{\pi} \left(\frac{\sin(t)}{\omega_0^2 - 1^2} - \frac{1}{3^2} \frac{\sin(3t)}{\omega_0^2 - 3^2} + \cdots \right),$$

as long as ω_0 is not an odd integer.

(b) If ω_0 is an odd integer there is no periodic solution.

(c) $\omega_r = 1$. For ω just less than 1, the term $\frac{4}{\pi} \frac{\sin(t)}{\omega_0^2 - 1}$ dominates, and x_p is relatively close to this: This is *antiphase* with $\sin(t)$ and has large amplitude. When ω_0 is just greater than 1, the same term occurs and dominates but now is a positive multiple of $\sin(t)$, so the system response is *in phase* with the input.

(d) This is a tricky question. When ω_0 is not an odd integer, the solution x_p above is periodic of period 2π . The general solution of the homogeneous equation is $a \cos(\omega_0 t) + b \sin(\omega_0 t)$, which is periodic of period $\frac{2\pi}{\omega_0}$. The sum is periodic if some multiple of 2π is

equal to some multiple of $\frac{2\pi}{\omega_0}$, and this happens when ω_0 is a rational number (but not an odd integer).

(e) Yes. [They are periodic of period 2π if ω_0 is an even integer.]

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.