Part II Problems and Solutions

Problem 1: [Periodic solutions] Let $g(t)$ be the function which is periodic of period 2π, and such that $g(t)=t$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ and $g(t)=\pi-t$ for $\frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
(a) Find a periodic solution to $\ddot{x}+\omega_{0}^{2} x=g(t)$ (if there is one).
(b) For what (positive) values of ω_{0} are there no periodic solution?
(c) Write ω_{r} for the smallest number you found in (b). For ω_{0} just less than ω_{r}, what is the solution like, approximately? How about for ω_{0} just larger than ω_{r} ?
(d) For what values of ω_{0} are there more than one periodic solution?
(e) For the values of ω_{0} found in (d), are all solutions to $\ddot{x}+\omega_{0}^{2} x=g(t)$ periodic?

Solution: (a) Using the integral formulas for the coefficients as usual we first calculate the Fourier series for $g(t)$. The result is

$$
g(t)=\frac{4}{\pi}\left(\sin (t)-\frac{1}{3^{2}} \sin (3 t)+\frac{1}{5^{2}} \sin (5 t)-\cdots\right) .
$$

By superposition and the fact that

$$
\ddot{x}+\omega_{0}^{2} x=A \sin (\omega t) \quad \text { has solution } \quad A \frac{\sin (\omega t)}{\omega_{0}^{2}-\omega^{2}}
$$

we find that a solution to $\ddot{x}+\omega_{0}^{2} x=g(t)$ is given by

$$
x_{p}=\frac{4}{\pi}\left(\frac{\sin (t)}{\omega_{0}^{2}-1^{2}}-\frac{1}{3^{2}} \frac{\sin (3 t)}{\omega_{0}^{2}-3^{2}}+\cdots\right),
$$

as long as ω_{0} is not an odd integer.
(b) If ω_{0} is an odd integer there is no periodic solution.
(c) $\omega_{r}=1$. For ω just less than 1 , the term $\frac{4}{\pi} \frac{\sin (t)}{\omega_{0}^{2}-1}$ dominates, and x_{p} is relatively close to this: This is antiphase with $\sin (t)$ and has large amplitude. When ω_{0} is just greater than 1 , the same term occurs and dominates but now is a positive multiple of $\sin (t)$, so the system response is in phase with the input.
(d) This is a tricky question. When ω_{0} is not an odd integer, the solution x_{p} above is periodic of period 2π. The general solution of the homogeneous equation is $a \cos \left(\omega_{0} t\right)+$ $b \sin \left(\omega_{0} t\right)$, which is periodic of period $\frac{2 \pi}{\omega_{0}}$. The sum is periodic if some multiple of 2π is
equal to some multiple of $\frac{2 \pi}{\omega_{0}}$, and this happens when ω_{0} is a rational number (but not an odd integer).
(e) Yes. [They are periodic of period 2π if ω_{0} is an even integer.]

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

