## Part I Problems and Solutions

**Problem 1:** For each spring-mass system, find whether pure resonance occurs, without actually calculating the solution.

- a) 2x'' + 10x = F(t); F(t) = 1 on (0,1), F(t) is odd, and of period 2;
- b)  $x'' + 4\pi^2 x = F(t)$ ; F(t) = 2t on (0,1), F(t) is odd, and of period 2;
- c) x'' + 9x = F(t); F(t) = 1 on  $(0, \pi)$ , F(t) is odd, and of period  $2\pi$

Solution: Consider

$$mx'' + kx = F(t)$$

The natural frequency of this spring-mass system is

$$\omega_0 = \sqrt{\frac{k}{m}}$$

The typical term of the Fourier expansion of F(t) is  $\cos \frac{n\pi}{L}t$ ,  $\sin \frac{n\pi}{L}t$ ; thus we get pure resonance if and only if the Fourier series has a term of the form  $\cos \frac{n\pi}{L}t$  or  $\sin \frac{n\pi}{L}t$ , where  $\frac{n\pi}{L} = \omega_0$ .

- a)  $\omega_0 = \sqrt{5}$  for spring-mass system, and L = 1. Fourier series is  $\sum b_n \sin n\pi t$ ;  $n\pi \neq \sqrt{5}$ , so no resonance.
- b)  $\omega_0 = 2\pi$ , L = 1. Fourier series is  $\sum b_n \sin n\pi t$ , and  $n\pi = 2\pi$  if n = 2. Thus, do get resonance.
- c)  $\omega_0 = 3$ . Fourier series is a sine series (F(t) is odd):  $F(t) = \sum b_n \sin nt$  all odd n occur, so n = 3 occurs and do get resonance.

**Problem 2:** Find a periodic solution as a Fourier series to x'' + 3x = F(t), where F(t) = 2t on  $(0, \pi)$ , F(t) is odd, and has period  $2\pi$ .

**Solution:** Input: 
$$F(t) = 4(\sin t - \frac{1}{2}\sin 2t + \frac{1}{3}\sin 3t - ...) = 4\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin nt}{n}$$

Solve in pieces: 
$$x_n'' + 3x_n = \sin nt \Rightarrow x_n = \frac{\sin nt}{3 - n^2}$$

Use superposition: (remember coefficients from the input)

$$x = 4\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin nt}{n(3-n^2)} = 4\left(\frac{\sin t}{2} + \frac{\sin 2t}{2} - \frac{\sin 3t}{18} + \frac{\sin 4t}{52} - \dots\right)$$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.