Part I Problems and Solutions

Problem 1: For each spring-mass system, find whether pure resonance occurs, without actually calculating the solution.
a) $2 x^{\prime \prime}+10 x=F(t) ; F(t)=1$ on $(0,1), F(t)$ is odd, and of period 2 ;
b) $x^{\prime \prime}+4 \pi^{2} x=F(t) ; F(t)=2 t$ on $(0,1), F(t)$ is odd, and of period 2 ;
c) $x^{\prime \prime}+9 x=F(t) ; F(t)=1$ on $(0, \pi), F(t)$ is odd, and of period 2π

Solution: Consider

$$
m x^{\prime \prime}+k x=F(t)
$$

The natural frequency of this spring-mass system is

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

The typical term of the Fourier expansion of $F(t)$ is $\cos \frac{n \pi}{L} t, \sin \frac{n \pi}{L} t$; thus we get pure resonance if and only if the Fourier series has a term of the form $\cos \frac{n \pi}{L} t$ or $\sin \frac{n \pi}{L} t$, where $\frac{n \pi}{L}=\omega_{0}$.
a) $\omega_{0}=\sqrt{5}$ for spring-mass system, and $L=1$. Fourier series is $\sum b_{n} \sin n \pi t ; n \pi \neq \sqrt{5}$, so no resonance.
b) $\omega_{0}=2 \pi, L=1$. Fourier series is $\sum b_{n} \sin n \pi t$, and $n \pi=2 \pi$ if $n=2$. Thus, do get resonance.
c) $\omega_{0}=3$. Fourier series is a sine series $\left(F(t)\right.$ is odd): $F(t)=\sum b_{n} \sin n t-$ all odd n occur, so $n=3$ occurs and do get resonance.

Problem 2: Find a periodic solution as a Fourier series to $x^{\prime \prime}+3 x=F(t)$, where $F(t)=2 t$ on $(0, \pi), F(t)$ is odd, and has period 2π.

Solution: Input: $F(t)=4\left(\sin t-\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t-\ldots\right)=4 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n t}{n}$
Solve in pieces: $x_{n}^{\prime \prime}+3 x_{n}=\sin n t \Rightarrow x_{n}=\frac{\sin n t}{3-n^{2}}$
Use superposition: (remember coefficients from the input)

$$
x=4 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n t}{n\left(3-n^{2}\right)}=4\left(\frac{\sin t}{2}+\frac{\sin 2 t}{2}-\frac{\sin 3 t}{18}+\frac{\sin 4 t}{52}-\ldots\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

