Example: Damped Harmonic Oscillator

Example. Let $f(t)$ be the triangle wave shown in figure 1 . Solve the differential equation

$$
\ddot{x}+2 \dot{x}+9 x=f(t)
$$

Solution. Using a previous example, or computing directly, we have the Fourier series for $f(t)$ is

$$
f(t)=\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos t+\frac{\cos 3 t}{3^{2}}+\frac{\cos 5 t}{5^{2}}+\ldots\right)
$$

We follow the same steps as in the example in the previous note.
Step 1: Solving for the individual components:
Solve:

$$
\begin{equation*}
\ddot{x}_{n}+2 \dot{x}_{n}+9 x_{n}=\cos n t \tag{1}
\end{equation*}
$$

If $n=0$ we get $x_{n, p}=\frac{1}{9}$.
For $n \geq 1$ we have
Complex replacement: $\ddot{z}_{n}+2 \dot{z}_{n}+9 z_{n}=e^{i n t}, \quad x_{n}=\operatorname{Re}\left(z_{n}\right)$
Exponential Response formula: $z_{n, p}=\frac{e^{i n t}}{9-n^{2}+2 i n}$.
Polar coords: $9-n^{2}+2 i n=R_{n} e^{i \phi_{n}}$, where

$$
R_{n}=\sqrt{\left(9-n^{2}\right)^{2}+4 n^{2}} \text { and } \phi_{n}=\operatorname{Arg}\left(9-n^{2}+2 i n\right)=\tan ^{-1} \frac{2 n}{9-n^{2}}
$$

(since the complex number is in the first or second we must take the arctangent between 0 and π).

Thus, $z_{n, p}=\frac{1}{R_{n}} e^{i\left(n t-\phi_{n}\right)}$, which implies $x_{n, p}=\frac{1}{R_{n}} \cos \left(n t-\phi_{n}\right)$
Step 2: Superposition. To make things easier in step one we did not include the Fourier coefficients of the input in the DE (1). To use superposition we need to include them here.

$$
x_{\mathrm{sp}}(t)=\frac{1}{18}-\frac{4}{\pi^{2}}\left(\frac{\cos \left(t-\phi_{1}\right)}{R_{1}}+\frac{\cos \left(3 t-\phi_{3}\right)}{3^{2} R_{3}}+\frac{\cos \left(5 t-\phi_{5}\right)}{5^{2} R_{5}}+\ldots\right),
$$

with the formulas for R_{n} and ϕ_{n} as above.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

