Part II Problems and Solutions

Problem 1: [Step and delta responses]

(a) Find the unit impulse response w for the LTI operator $2 D^{2}+4 D+4 I$.
(b) Find the unit step response v for the same operator.
(c) Verify that $\dot{v}=w$ (as it should be, since $\dot{u}=\delta$).
(d) For each of the following functions, find the LTI differential operator $p(D)$ having it as unit impulse response.
(i) $2 u(t)$.
(ii) $u(t) t$.
(iii) $u(t) t^{2}$.

Solution: (a) The roots of the characteristic polynomial are $-1 \pm i$, so the general solution to the homogeneous equation is $e^{-t}(a \cos t+b \sin t)$. The unit impulse response for this second order operator has $w(0)=0$ and $\dot{w}(0+)=\frac{1}{2}$. The first forces $a=0$ and the second gives $b=\frac{1}{2}: w(t)=\frac{1}{2} u(t) e^{-t} \sin t$.
(b) For $t>0$, the unit step response is a solution to $p(D) x=1$. In our case, $x_{p}=\frac{1}{4}$ is such a solution, and the general solution is then $x=\frac{1}{4}+e^{-t}(a \cos t+b \sin t)$. We require rest initial conditions: $0=x(0)=\frac{1}{4}+a$ or $a=-\frac{1}{4} \cdot \dot{x}=e^{-t}((-a+b) \cos t+(-a-b) \sin t)$, so $0=\dot{x}(0)=-a+b$ and $b=-\frac{1}{4}$ as well: $v=\frac{1}{4} u(t)\left(1-e^{-t}(\cos t+\sin t)\right)$.
(c) $\dot{v}=-\frac{1}{4} e^{-t}((-1+1) \cos t+(-1-1) \sin t)=\frac{1}{2} e^{-t} \sin t$.
(d) (i) This function has a jump in value, so the operator must be of first order. $\quad(a D+$ $b I)(2 u)=2 a \delta(t)+2 b u(t)$, so $b=0$ and $a=\frac{1}{2}: p(D)=\frac{1}{2} D$.
(ii) This function has no jump but its derivative does, so the operator must be of second order. For $t>0, w(t)=t$ is the solution to $a_{2} \ddot{x}+a_{1} \dot{x}+a_{0} x=0$ with $x(0)=0$ and $\dot{x}(0)=\frac{1}{a_{2}}$. Plug in: $a_{1}+a_{0} t=0$ implies $a_{1}=a_{0}=0$, and $1=\left.\frac{d}{d t} t\right|_{t=0}=\frac{1}{a_{2}}$ implies that $a_{2}=1$. So $p(D)=D^{2}$. Or you can argue that $w(t)=u(t) t, \dot{w}(t)=u(t)$ and $\ddot{w}(t)=\delta(t)$, so $a_{2} \delta(t)=\delta(t)$ and $a_{2}=1$.
(iii) This function $w(t)$ has no jump in value or derivative, but its second derivative does jump: $\ddot{w}(t)=2 u(t)$. So $w^{(3)}(t)=2 \delta(t)$. This means that we are looking for a third order operator, $a_{3} D^{3}+a_{2} D^{2}+a_{1} D+a_{0} I$. t^{2} is a solution to the homogeneous equation, so $a_{2} \cdot 2+a_{1} \cdot 2 t+a_{0} t^{2}=0$, which implies that $a_{0}=a_{1}=a_{2}=0$. $\ddot{w}(0)=2$ implies that $a_{3}=\frac{1}{2}$ and $p(D)=\frac{1}{2} D^{3}$. Or you can argue that $w(t)=u(t) t^{2}, \dot{w}(t)=u(t) 2 t, \ddot{w}(t)=2 u(t)$, $w^{(3)}(t)=2 \delta(t)$, so $a_{3} w^{(3)}(t)=\delta(t)$ implies that $a_{3}=\frac{1}{2}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

