Part II Problems and Solutions

Problem 1: [Step and delta responses]

(a) Find the unit impulse response w for the LTI operator $2D^2 + 4D + 4I$.

(b) Find the unit step response *v* for the same operator.

(c) Verify that $\dot{v} = w$ (as it should be, since $\dot{u} = \delta$).

(d) For each of the following functions, find the LTI differential operator p(D) having it as unit impulse response.

(*i*) 2u(t).

(ii) u(*t*)*t*.

(iii) $u(t)t^2$.

Solution: (a) The roots of the characteristic polynomial are $-1 \pm i$, so the general solution to the homogeneous equation is $e^{-t}(a \cos t + b \sin t)$. The unit impulse response for this second order operator has w(0) = 0 and $\dot{w}(0+) = \frac{1}{2}$. The first forces a = 0 and the second gives $b = \frac{1}{2}$: $w(t) = \frac{1}{2}u(t)e^{-t}\sin t$.

(b) For t > 0, the unit step response is a solution to p(D)x = 1. In our case, $x_p = \frac{1}{4}$ is such a solution, and the general solution is then $x = \frac{1}{4} + e^{-t}(a\cos t + b\sin t)$. We require rest initial conditions: $0 = x(0) = \frac{1}{4} + a$ or $a = -\frac{1}{4}$. $\dot{x} = e^{-t}((-a+b)\cos t + (-a-b)\sin t)$, so $0 = \dot{x}(0) = -a + b$ and $b = -\frac{1}{4}$ as well: $v = \frac{1}{4}u(t)(1 - e^{-t}(\cos t + \sin t))$.

(c) $\dot{v} = -\frac{1}{4}e^{-t}((-1+1)\cos t + (-1-1)\sin t) = \frac{1}{2}e^{-t}\sin t.$

(d) (i) This function has a jump in *value*, so the operator must be of first order. $(aD + bI)(2u) = 2a\delta(t) + 2bu(t)$, so b = 0 and $a = \frac{1}{2}$: $p(D) = \frac{1}{2}D$.

(ii) This function has no jump but its derivative does, so the operator must be of second order. For t > 0, w(t) = t is the solution to $a_2\ddot{x} + a_1\dot{x} + a_0x = 0$ with x(0) = 0 and $\dot{x}(0) = \frac{1}{a_2}$. Plug in: $a_1 + a_0t = 0$ implies $a_1 = a_0 = 0$, and $1 = \frac{d}{dt}t\Big|_{t=0} = \frac{1}{a_2}$ implies that $a_2 = 1$. So $p(D) = D^2$. Or you can argue that w(t) = u(t)t, $\dot{w}(t) = u(t)$ and $\ddot{w}(t) = \delta(t)$, so $a_2\delta(t) = \delta(t)$ and $a_2 = 1$.

(iii) This function w(t) has no jump in value or derivative, but its second derivative does jump: $\ddot{w}(t) = 2u(t)$. So $w^{(3)}(t) = 2\delta(t)$. This means that we are looking for a third order operator, $a_3D^3 + a_2D^2 + a_1D + a_0I$. t^2 is a solution to the homogeneous equation, so $a_2 \cdot 2 + a_1 \cdot 2t + a_0t^2 = 0$, which implies that $a_0 = a_1 = a_2 = 0$. $\ddot{w}(0) = 2$ implies that $a_3 = \frac{1}{2}$ and $p(D) = \frac{1}{2}D^3$. Or you can argue that $w(t) = u(t)t^2$, $\dot{w}(t) = u(t)2t$, $\ddot{w}(t) = 2u(t)$, $w^{(3)}(t) = 2\delta(t)$, so $a_3w^{(3)}(t) = \delta(t)$ implies that $a_3 = \frac{1}{2}$.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.