First order Unit Step Response

1. Unit Step Response

Consider the initial value problem

$$
\dot{x}+k x=r u(t), \quad x\left(0^{-}\right)=0, \quad k, r \text { constants } .
$$

This would model, for example, the amount of uranium in a nuclear reactor where we add uranium at the constant rate of $r \mathrm{~kg} /$ year starting at time $t=0$ and where k is the decay rate of the uranium.

As in the previous note, adding an infinitesimal amount $(r d t)$ at a time leads to a continuous response. We have $x(t)=0$ for $t<0$; and for $t>0$ we must solve

$$
\dot{x}+k x=r, x(0)=0 .
$$

The general solution is $x(t)=(r / k)+c e^{-k t}$. To find c, we use $x(0)=0$:

$$
0=x(0)=\frac{r}{k}+c \Rightarrow c=-\frac{r}{k} .
$$

Thus, in both cases and u-format

$$
x(t)=\left\{\begin{array}{ll}
0 & \text { for } t<0 \tag{1}\\
\frac{r}{k}\left(1-e^{-k t}\right) & \text { for } t>0
\end{array}=\frac{r}{k}\left(1-e^{-k t}\right) u(t) .\right.
$$

With $r=1$, this is the unit step response, sometimes written $v(t)$. To be more precise, we could write $v(t)=u(t)(1 / k)\left(1-e^{-k t}\right)$.

The claim that we get a continuous response is true, but may feel a bit unjustified. Let's redo the above example very carefully without making this assumption. Naturally, we will get the same answer.

The equation is

$$
\dot{x}+k x=\left\{\begin{array}{ll}
0 & \text { for } t<0 \tag{2}\\
r & \text { for } t>0,
\end{array} \quad x\left(0^{-}\right)=0 .\right.
$$

Solving the two pieces we get

$$
x(t)= \begin{cases}c_{1} e^{-k t} & \text { for } t<0 \\ \frac{r}{k}+c_{2} e^{-k t} & \text { for } t>0\end{cases}
$$

This gives $x\left(0^{-}\right)=c_{1}$ and $x\left(0^{+}\right)=r / k+c_{2}$. If these two are different there is a jump at $t=0$ of magnitude

$$
x\left(0^{+}\right)-x\left(0^{-}\right)=r / k+c_{2}-c_{1} .
$$

The initial condition $x\left(0^{-}\right)=0$ implies $c_{1}=0$, so our solution looks like

$$
x(t)= \begin{cases}0 & \text { for } t<0 \\ \frac{r}{k}+c_{2} e^{-k t} & \text { for } t>0\end{cases}
$$

To find c_{2} we substitute this into our differential equation (2). (We must use the generalized derivative if there is a jump at $t=0$.) After substitution the left side of (2) becomes

$$
\begin{aligned}
\dot{x}+k x & =\left(r / k+c_{2}\right) \delta(t)+ \begin{cases}0 & \text { for } t<0 \\
-k c_{2} e^{-k t}+r+k c_{2} e^{-k t} & \text { for } t>0\end{cases} \\
& =\left(r / k+c_{2}\right) \delta(t)+ \begin{cases}0 & \text { for } t<0 \\
r & \text { for } t>0 .\end{cases}
\end{aligned}
$$

Comparing this with the right side of (2) we see that $r / k+c_{2}=0$, or $c_{2}=$ $-r / k$. This gives exactly the same solution (1) we had before.

Figure 1 shows the graph of the unit step response $(r=1)$. Notice that it starts at 0 and goes asymptotically up to $1 / k$.

Figure 1. Unit step is the response of the system $\dot{x}+k x=f(t)$ when $f(t)=u(t)$.
The Meaning of the Phrase 'Unit Step Response'
In this note looked at the system with equation

$$
\dot{x}+k x=f(t)
$$

and we considered $f(t)$ to be the input. As we have noted previously, it sometimes makes more sense to consider something else to be the input. For example, in Newton's law of cooling

$$
\dot{T}+k T=k T_{e}
$$

it makes physical sense to call T_{e}, the temperature of the environment, the input. In this case the unit step response of the system means the response to the input $T_{e}(t)=u(t)$, i.e. the solution to

$$
\dot{T}+k T=k u(t)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

