Part I Problems

Problem 1: Compute the following matrix products:
a) $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
b) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}x & y\end{array}\right]$
c) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}x & u \\ y & v\end{array}\right]$

Problem 2: Let $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 2 & 1\end{array}\right]$. Show that $A B \neq B A$.
Problem 3: Write the following equations as equivalent first-order systems.
a) $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+t x^{2}=0$
b) $y^{\prime \prime}-x^{2} y^{\prime}+\left(1-x^{2}\right) y=\sin x$

Problem 4: Solve the system $x^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] x$ in two ways:
a) Solve the second equation, substitute for y in the first equation, and solve it.
b) Eliminate y by solving the first equation for y, then substitute into the second equation, getting a second order equation for x. Solve it, and then find y from the first equation. Do your two methods give the same answer?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

