Part I Problems and Solutions

Problem 1: Compute the following matrix products:

Solution:

- a) $\begin{bmatrix} x + 2y \end{bmatrix}$ b) $\begin{bmatrix} x & y \\ 2x & 2y \end{bmatrix}$
- c) $\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$
- d) $\begin{bmatrix} x+2y & u+2v \\ 3x+4y & 3u+4v \end{bmatrix}$

Problem 2: Let $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix}$. Show that $AB \neq BA$.

Solution:

$$AB = \begin{bmatrix} 4 & 1 \\ -2 & -4 \end{bmatrix}$$
$$BA = \begin{bmatrix} -3 & 1 \\ 5 & 3 \end{bmatrix}$$

Problem 3: Write the following equations as equivalent first-order systems.

a) $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + tx^2 = 0$ b) $y'' - x^2y' + (1 - x^2)y = \sin x$

Solution:

- a) $x'' + 5x' + tx^2 = 0 \rightarrow x' = y, y' = -tx^2 5y$
- b) $y'' x^2y' + (1 x^2)y = \sin x \rightarrow y' = z$, $z' = (x^2 1)y + x^2z + \sin x$

Problem 4: Solve the system $x' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x$ in two ways:

a) Solve the second equation, substitute for y in the first equation, and solve it.

b) Eliminate *y* by solving the first equation for *y*, then substitute into the second equation, getting a second order equation for *x*. Solve it, and then find *y* from the first equation. Do your two methods give the same answer?

Solution:

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

or x' = x + y, y' = y.

a) From the second equation, $y = c_1e^t$, so $x' - x = c_1e^t$, so the solution is $x = c_2e^t + c_1te^t$, $y = c_1e^t$.

b) Here we eliminate *y* instead. y = x' - x so $(x' - x)' = x' - x \rightarrow x'' - 2x' + x = 0 \rightarrow (m-1)^2 = 0$ (char. eqn.). Thus, we have $x = c_1e^t + c_2te^t$, $y = c_2e^t$ (since y = x' - x). This is the same as before, with c_1, c_2 switched.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.