Part I Problems and Solutions

Problem 1: Compute the following matrix products:
a) $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
b) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}x & y\end{array}\right]$
c) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}x & u \\ y & v\end{array}\right]$

Solution:

a) $[x+2 y]$
b) $\left[\begin{array}{cc}x & y \\ 2 x & 2 y\end{array}\right]$
c) $\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right]$
d) $\left[\begin{array}{cc}x+2 y & u+2 v \\ 3 x+4 y & 3 u+4 v\end{array}\right]$

Problem 2: Let $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 2 & 1\end{array}\right]$. Show that $A B \neq B A$.
Solution:

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
4 & 1 \\
-2 & -4
\end{array}\right] \\
B A & =\left[\begin{array}{cc}
-3 & 1 \\
5 & 3
\end{array}\right]
\end{aligned}
$$

Problem 3: Write the following equations as equivalent first-order systems.
a) $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+t x^{2}=0$
b) $y^{\prime \prime}-x^{2} y^{\prime}+\left(1-x^{2}\right) y=\sin x$

Solution:

a) $x^{\prime \prime}+5 x^{\prime}+t x^{2}=0 \rightarrow x^{\prime}=y, y^{\prime}=-t x^{2}-5 y$
b) $y^{\prime \prime}-x^{2} y^{\prime}+\left(1-x^{2}\right) y=\sin x \rightarrow y^{\prime}=z, z^{\prime}=\left(x^{2}-1\right) y+x^{2} z+\sin x$

Problem 4: Solve the system $x^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] x$ in two ways:
a) Solve the second equation, substitute for y in the first equation, and solve it.
b) Eliminate y by solving the first equation for y, then substitute into the second equation, getting a second order equation for x. Solve it, and then find y from the first equation. Do your two methods give the same answer?

Solution:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

or $x^{\prime}=x+y, y^{\prime}=y$.
a) From the second equation, $y=c_{1} e^{t}$, so $x^{\prime}-x=c_{1} e^{t}$, so the solution is $x=c_{2} e^{t}+c_{1} t e^{t}$, $y=c_{1} e^{t}$.
b) Here we eliminate y instead. $y=x^{\prime}-x$ so $\left(x^{\prime}-x\right)^{\prime}=x^{\prime}-x \rightarrow x^{\prime \prime}-2 x^{\prime}+x=0 \rightarrow$ $(m-1)^{2}=0$ (char. eqn.). Thus, we have $x=c_{1} e^{t}+c_{2} t e^{t}, y=c_{2} e^{t}$ (since $y=x^{\prime}-x$). This is the same as before, with c_{1}, c_{2} switched.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

