18.03SC Practice Problems 32

First order linear systems

Vocabulary/Concepts: system of differential equations; linear, time-independent, homogeneous; matrix, matrix multiplication; solution, trajectory, phase portrait; companion matrix.

1. Practice in matrix multiplication: Compute the following products.
(a) $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$,
(b) $\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}x & y\end{array}\right]$,
(c) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$,
(d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}x & u \\ y & v\end{array}\right]$.
2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be any 2×2 matrix.

Multiplying by the matrix A sends any vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ to another vector $A\left[\begin{array}{l}x \\ y\end{array}\right]$.
This operation can be visualized by thinking about where it sends the square with corners

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{j}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{i}+\mathbf{j}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For each of the following matrices A, draw segments connecting the dots $0, A \mathbf{i}$, $A(\mathbf{i}+\mathbf{j}), A \mathbf{j}, \mathbf{0}$, and come up with a verbal description of the operation.
(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(d) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(e) $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
3. Examine the equation

$$
\ddot{x}+2 \dot{x}+2 x=0 .
$$

(a) What is the companion matrix A of this second order equation?
(b) Find two independent real solutions of this equation.
(c) Now let $x_{1}(t)$ denote the solution with initial condition $x_{1}(0)=0, \dot{x}_{1}(0)=1$. Find it, and then write down the corresponding solution $\mathbf{u}_{1}(t)=\left[\begin{array}{l}x_{1}(t) \\ \dot{x}_{1}(t)\end{array}\right]$ of the equation $\dot{\mathbf{u}}=A \mathbf{u}$. What is $\mathbf{u}_{1}(0)$?
Sketch the graphs of $x_{1}(t)$ and of $\dot{x}_{1}(t)$, and sketch the trajectory of the solution $\mathbf{u}_{1}(t)$. Compare these pictures.
(d) Sketch a few more trajectories to fill out the phase portrait. In particular, sketch the trajectory of $\mathbf{u}_{\mathbf{2}}(t)$ with $\mathbf{u}_{\mathbf{2}}(0)=\mathbf{i}$.
When trajectories of this companion equation cross the x axis, at what angle do they cross it?
4. Let $a+b i$ be a complex number. There is a matrix A such that if $(a+b i)(x+y i)=$ $(v+w i)$ then

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
v \\
w
\end{array}\right]
$$

(a) Find this matrix A for general $a+b i$.
(b) What is the matrix for $a+b i=2$? For $a+b i=i$? For $a+b i=1+i$? Draw the parallelograms discussed in (2) for these matrices.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

