Solving by Elimination

Exercise. Use the method of elimination to solve the following system.

$$
\begin{aligned}
& \dot{x}=x+3 y \\
& \dot{y}=x-y .
\end{aligned}
$$

Answer.
Step 1. Let us eliminate x by solving the second equation for x. We get

$$
\begin{equation*}
x=y+\dot{y} \tag{1}
\end{equation*}
$$

Replacing x everywhere by $y+\dot{y}$ in the first equation gives

$$
\begin{equation*}
\ddot{y}-4 y=0 . \tag{2}
\end{equation*}
$$

Step 2. The characteristic equation for (2) is $(r-2)(r+2)=0$, so the general solution for y is

$$
y=c_{1} e^{2 t}+c_{2} e^{-2 t} .
$$

Step 3. From the solution for y and equation (1), that was originally used to eliminate x, we get $x=3 c_{1} e^{2 t}-c_{2} e^{-2 t}$.
Step 4. The solution to the system is thus

$$
\begin{aligned}
& x=3 c_{1} e^{2 t}-c_{2} e^{-2 t} \\
& y=c_{1} e^{2 t}+c_{2} e^{-2 t} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

