Matrix Notation

Exercise. The system (which we looked at earlier)

$$
\begin{aligned}
& \dot{x}=x+3 y \\
& \dot{y}=x-y
\end{aligned}
$$

has general solution

$$
\begin{aligned}
& x=3 c_{1} e^{2 t}-c_{2} e^{-2 t} \\
& y=c_{1} e^{2 t}+c_{2} e^{-2 t} .
\end{aligned}
$$

Re-express this using matrix notation. What are two independent basic solutions?
Answer. The matrix form for the system is

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right)\binom{x}{y} .
$$

and the solution can be expressed as

$$
\binom{x}{y}=\binom{3 c_{1} e^{2 t}-c_{2} e^{-2 t}}{c_{1} e^{2 t}+c_{2} e^{-2 t}}=c_{1} e^{2 t}\binom{3}{1}+c_{2} e^{-2 t}\binom{-1}{1} .
$$

Two basic independent particular solutions are

$$
e^{2 t}\binom{3}{1} \quad \text { and } \quad e^{-2 t}\binom{-1}{1}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

