1. (12 points) This question is about the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 1 & 4 \\
3 & 6 & 3 & 9
\end{array}\right]
$$

(a) Find a lower triangular L and an upper triangular U so that $A=L U$.

Answer:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Find the reduced row echelon form $R=\operatorname{rref}(A)$. How many independent columns in A ?

Answer: 2

$$
R=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]=U \text { in this example. }
$$

(c) Find a basis for the nullspace of A.

Answer:

$$
\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{r}
3 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(d) If the vector b is the sum of the four columns of A, write down the complete solution to $A x=b$.

Answer:

$$
x=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
3 \\
-2 \\
0 \\
1
\end{array}\right]
$$

2. (11 points) This problem finds the curve $y=C+D 2^{t}$ which gives the best least squares fit to the points $(t, y)=(0,6),(1,4),(2,0)$.
(a) Write down the 3 equations that would be satisfied if the curve went through all 3 points.

Answer:

$$
\begin{aligned}
& \mathrm{C}+1 \mathrm{D}=6 \\
& \mathrm{C}+2 \mathrm{D}=4 \\
& \mathrm{C}+4 \mathrm{D}=0
\end{aligned}
$$

(b) Find the coefficients C and D of the best curve $y=C+D 2^{t}$.

Answer:

$$
\begin{gathered}
A^{T} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 & 7 \\
7 & 21
\end{array}\right] \\
A^{T} b=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
10 \\
14
\end{array}\right]
\end{gathered}
$$

Solve $A^{T} A \hat{x}=A^{T} b$:

$$
\left[\begin{array}{cc}
3 & 7 \\
7 & 21
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
10 \\
14
\end{array}\right] \text { gives }\left[\begin{array}{l}
C \\
D
\end{array}\right]=\frac{1}{14}\left[\begin{array}{rr}
21 & -7 \\
-7 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
14
\end{array}\right]=\left[\begin{array}{r}
8 \\
-2
\end{array}\right] .
$$

(c) What values should y have at times $t=0,1,2$ so that the best curve is $y=0$?

Answer:

The projection is $p=(0,0,0)$ if $A^{T} b=0$. In this case, $b=$ values of $y=c(2,-3,1)$.
3. (11 points) Suppose $A v_{i}=b_{i}$ for the vectors v_{1}, \ldots, v_{n} and b_{1}, \ldots, b_{n} in R^{n}. Put the v 's into the columns of V and put the b 's into the columns of B.
(a) Write those equations $A v_{i}=b_{i}$ in matrix form. What condition on which vectors allows A to be determined uniquely? Assuming this condition, find A from V and B.

Answer:
$A\left[v_{1} \cdots v_{n}\right]=\left[b_{1} \cdots b_{n}\right]$ or $A V=B$. Then $A=B V^{-1}$ if the $v^{\prime} s$ are independent.
(b) Describe the column space of that matrix A in terms of the given vectors.

Answer:

The column space of A consists of all linear combinations of b_{1}, \cdots, b_{n}.
(c) What additional condition on which vectors makes A an invertible matrix? Assuming this, find A^{-1} from V and B.

Answer:
If the $b^{\prime} s$ are independent, then B is invertible and $A^{-1}=V B^{-1}$.

4. (11 points)

(a) Suppose x_{k} is the fraction of MIT students who prefer calculus to linear algebra at year k. The remaining fraction $y_{k}=1-x_{k}$ prefers linear algebra.

At year $k+1,1 / 5$ of those who prefer calculus change their mind (possibly after taking 18.03). Also at year $k+1,1 / 10$ of those who prefer linear algebra change their mind (possibly because of this exam).
Create the matrix A to give $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=A\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$ and find the limit of $A^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as $k \rightarrow \infty$.
Answer:
$A=\left[\begin{array}{ll}.8 & .1 \\ .2 & .9\end{array}\right]$.
The eigenvector with $\lambda=1$ is $\left[\begin{array}{l}1 / 3 \\ 2 / 3\end{array}\right]$.
This is the steady state starting from $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. $\frac{2}{3}$ of all students prefer linear algebra! I agree.
(b) Solve these differential equations, starting from $x(0)=1, \quad y(0)=0$:

$$
\frac{d x}{d t}=3 x-4 y \quad \frac{d y}{d t}=2 x-3 y
$$

Answer:

$A=\left[\begin{array}{ll}3 & -4 \\ 2 & -3\end{array}\right]$.
has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$ with eigenvectors $x_{1}=(2,1)$ and $x_{2}=(1,1)$.
The initial vector $(x(0), y(0))=(1,0)$ is $x_{1}-x_{2}$.
So the solution is $(x(t), y(t))=e^{t}(2,1)+e^{-t}(1,1)$.
(c) For what initial conditions $\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]$ does the solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ to this differential equation lie on a single straight line in R^{2} for all t ?

Answer:

If the initial conditions are a multiple of either eigenvector $(2,1)$ or $(1,1)$, the solution is at all times a multiple of that eigenvector.

5. (11 points)

(a) Consider a 120° rotation around the axis $x=y=z$. Show that the vector $i=(1,0,0)$ is rotated to the vector $j=(0,1,0)$. (Similarly j is rotated to $k=(0,0,1)$ and k is rotated to i.) How is $j-i$ related to the vector $(1,1,1)$ along the axis?

Answer:

$j-i=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$
is orthogonal to the axis vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
So are $k-j$ and $i-k$. By symmetry the rotation takes i to j, j to k, k to i.
(b) Find the matrix A that produces this rotation (so $A v$ is the rotation of v). Explain why $A^{3}=I$. What are the eigenvalues of A ?

Answer:

$A^{3}=I$ because this is three 120° rotations (so 360°). The eigenvalues satisfy $\lambda^{3}=1$ so $\lambda=1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}=e^{4 \pi i / 3}$.
(c) If a 3 by 3 matrix P projects every vector onto the plane $x+2 y+z=0$, find three eigenvalues and three independent eigenvectors of P. No need to compute P.

Answer: The plane is perpendicular to the vector $(1,2,1)$. This is an eigenvector of P with $\lambda=0$. The vectors $(-2,1,0)$ and $(1,-1,1)$ are eigenvectors with $\lambda=0$.
6. (11 points) This problem is about the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

(a) Find the eigenvalues of $A^{T} A$ and also of $A A^{T}$. For both matrices find a complete set of orthonormal eigenvectors.

Answer:

$$
A^{T} A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]=\left[\begin{array}{ll}
14 & 28 \\
28 & 56
\end{array}\right]
$$

has $\lambda_{1}=70$ and $\lambda_{2}=0$ with eigenvectors $x_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $x_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
$\mathrm{AA}^{T}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4 \\ 3 & 6\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]=\left[\begin{array}{rrr}5 & 10 & 15 \\ 10 & 20 & 30 \\ 15 & 30 & 45\end{array}\right]$ has $\lambda_{1}=70, \lambda_{2}=0, \lambda_{3}=0$ with
$\mathrm{x}_{1}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad$ and $x_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right] \quad$ and $x_{3}=\frac{1}{\sqrt{70}}\left[\begin{array}{r}3 \\ 6 \\ -5\end{array}\right]$.
(b) If you apply the Gram-Schmidt process (orthonormalization) to the columns of this matrix A, what is the resulting output?

Answer:

Gram-Schmidt will find the unit vector

$$
q_{1}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

But the construction of q_{2} fails because column $2=2($ column 1$)$.
(c) If A is any m by n matrix with $m>n$, tell me why $A A^{T}$ cannot be positive definite. Is $A^{T} A$ always positive definite? (If not, what is the test on A ?)

Answer

$A A^{T}$ is m by m but its rank is not greater than n (all columns of $A A^{T}$ are combinations of columns of A). Since $n<m, A A^{T}$ is singular.
$A^{T} A$ is positive definite if A has full colum rank n. (Not always true, A can even be a zero matrix.)
7. (11 points) This problem is to find the determinants of

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det} A$ and give a reason.

Answer:

$\operatorname{det} A=0$ because two rows are equal.
(b) Find the cofactor C_{11} and then find $\operatorname{det} B$. This is the volume of what region in R^{4} ?

Answer:

The cofactor $C_{11}=-1$. Then $\operatorname{det} B=\operatorname{det} A-C_{11}=1$. This is the volume of a box in R^{4} with edges $=$ rows of B.
(c) Find $\operatorname{det} C$ for any value of x. You could use linearity in row 1 .

Answer:
$\operatorname{det} C=x C_{11}+\operatorname{det} B=-x+1$. Check this answer (zero), for $x=1$ when $C=A$.

8. (11 points)

(a) When A is similar to $B=M^{-1} A M$, prove this statement:

If $A^{k} \rightarrow 0$ when $k \rightarrow \infty$, then also $B^{k} \rightarrow 0$.

Answer:

A and B have the same eigenvalues. If $A^{k} \rightarrow 0$ then all $|\lambda|<1$. Therefore $B^{k} \rightarrow 0$.
(b) Suppose S is a fixed invertible 3 by 3 matrix.

This question is about all the matrices A that are diagonalized by S, so that
$S^{-1} A S$ is diagonal. Show that these matrices A form a subspace of 3 by 3 matrix space. (Test the requirements for a subspace.)

Answer:

If A_{1} and A_{2} are in the space, they are diagonalized by S. Then $S^{-1}\left(c A_{1}+d A_{2}\right) S$ is diagonal + diagonal $=$ diagonal.
(c) Give a basis for the space of 3 by 3 diagonal matrices. Find a basis for the space in part (b) - all the matrices A that are diagonalized by S.

Answer:
A basis for the diagonal matrices is

$$
D_{1}=\left[\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0
\end{array}\right] D_{2}=\left[\begin{array}{lll}
0 & & \\
& 1 & \\
& & 0
\end{array}\right] D_{3}=\left[\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1
\end{array}\right]
$$

Then $S D_{1} S^{-1}, S D_{2} S^{-1}, S D_{3} S^{-1}$ are all diagonalized by S : a basis for the subspace.
9. (11 points) This square network has 4 nodes and 6 edges. On each edge, the direction of positive current $w_{i}>0$ is from lower node number to higher node number. The voltages at the nodes are ($v_{1}, v_{2}, v_{3}, v_{4}$.)

Answer:

(a) Write down the incidence matrix A for this network (so that $A v$ gives the 6 voltage differences like $v_{2}-v_{1}$ across the 6 edges). What is the rank of A ? What is the dimension of the nullspace of A^{T} ?

Answer:

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

has rank $r=3$. The nullspace of A^{T} has dimension $6-3=3$.
(b) Compute the matrix $A^{T} A$. What is its rank? What is its nullspace?

Answer:

$$
A^{T} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
-1 & -1 & -1 & 3
\end{array}\right]
$$

has rank 3 like A. The nullspace is the line through ($1,1,1,1$).
(c) Suppose $v_{1}=1$ and $v_{4}=0$. If each edge contains a unit resistor, the currents $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)$ on the 6 edges will be $w=-A v$ by Ohm's Law. Then Kirchhoff's Current Law (flow in $=$ flow out at every node) gives $A^{T} w=0$ which means $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{v}=\mathbf{0}$. Solve $A^{T} A v=0$ for the unknown voltages v_{2} and v_{3}. Find all 6 currents w_{1} to w_{6}. How much current enters node 4 ?

Answer:

Note: As stated there is no solution (my apologies!). All solutions to $A^{T} A v=0$ are multiples of $(1,1,1,1)$ which rules out $v_{1}=1$ and $v_{4}=0$.
Intended problem: I meant to solve the reduced equations using $K C L$ only at nodes 2 and 3. In fact symmetry gives $v_{2}=v_{3}=\frac{1}{2}$. Then the currents are $w_{1}=w_{2}=w_{5}=$ $w_{6}=\frac{1}{2}$ around the sides and $w_{3}=1$ and $w_{4}=0$ (symmetry). So $w_{3}+w_{5}+w_{6}=\frac{1}{2}$ is the total current into node 4.

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

