Your PRINTED name is: __ 1.
Your recitation number is
2.
3.
4.
5.
6.
7.
8.
9.

1. (12 points) This question is about the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 1 & 4 \\
3 & 6 & 3 & 9
\end{array}\right]
$$

(a) Find a lower triangular L and an upper triangular U so that $A=L U$.
(b) Find the reduced row echelon form $R=\operatorname{rref}(A)$. How many independent columns in A ?
(c) Find a basis for the nullspace of A.
(d) If the vector b is the sum of the four columns of A, write down the complete solution to

$$
A x=b
$$

2. (11 points) This problem finds the curve $y=C+D 2^{t}$ which gives the best least squares fit to the points $(t, y)=(0,6),(1,4),(2,0)$.
(a) Write down the 3 equations that would be satisfied if the curve went through all 3 points.
(b) Find the coefficients C and D of the best curve $y=C+D 2^{t}$.
(c) What values should y have at times $t=0,1,2$ so that the best curve is $y=0$?
3. (11 points) Suppose $A v_{i}=b_{i}$ for the vectors v_{1}, \ldots, v_{n} and b_{1}, \ldots, b_{n} in R^{n}. Put the v 's into the columns of V and put the b 's into the columns of B.
(a) Write those equations $A v_{i}=b_{i}$ in matrix form. What condition on which vectors allows A to be determined uniquely? Assuming this condition, find A from V and B.
(b) Describe the column space of that matrix A in terms of the given vectors.
(c) What additional condition on which vectors makes A an invertible matrix? Assuming this, find A^{-1} from V and B.

4. (11 points)

(a) Suppose x_{k} is the fraction of MIT students who prefer calculus to linear algebra at year k. The remaining fraction $y_{k}=1-x_{k}$ prefers linear algebra.

At year $k+1,1 / 5$ of those who prefer calculus change their mind (possibly after taking 18.03). Also at year $k+1,1 / 10$ of those who prefer linear algebra change their mind (possibly because of this exam).

Create the matrix A to give $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=A\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$ and find the limit of $A^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as $k \rightarrow \infty$.
(b) Solve these differential equations, starting from $x(0)=1, \quad y(0)=0$:

$$
\frac{d x}{d t}=3 x-4 y \quad \frac{d y}{d t}=2 x-3 y .
$$

(c) For what initial conditions $\left[\begin{array}{l}x(0) \\ y(0)\end{array}\right]$ does the solution $\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ to this differential equation lie on a single straight line in R^{2} for all t ?

5. (11 points)

(a) Consider a 120° rotation around the axis $x=y=z$. Show that the vector $i=(1,0,0)$ is rotated to the vector $j=(0,1,0)$. (Similarly j is rotated to $k=(0,0,1)$ and k is rotated to i.) How is $j-i$ related to the vector $(1,1,1)$ along the axis?
(b) Find the matrix A that produces this rotation (so $A v$ is the rotation of v). Explain why $A^{3}=I$. What are the eigenvalues of A ?
(c) If a 3 by 3 matrix P projects every vector onto the plane $x+2 y+z=0$, find three eigenvalues and three independent eigenvectors of P. No need to compute P.
6. (11 points) This problem is about the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 6
\end{array}\right]
$$

(a) Find the eigenvalues of $A^{T} A$ and also of $A A^{T}$. For both matrices find a complete set of orthonormal eigenvectors.
(b) If you apply the Gram-Schmidt process (orthonormalization) to the columns of this matrix A, what is the resulting output?
(c) If A is any m by n matrix with $m>n$, tell me why $A A^{T}$ cannot be positive definite. Is $A^{T} A$ always positive definite? (If not, what is the test on A ?)
7. (11 points) This problem is to find the determinants of

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llll}
x & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det} A$ and give a reason.
(b) Find the cofactor C_{11} and then find $\operatorname{det} B$. This is the volume of what region in R^{4} ?
(c) Find $\operatorname{det} C$ for any value of x. You could use linearity in row 1 .

8. (11 points)

(a) When A is similar to $B=M^{-1} A M$, prove this statement:

If $A^{k} \rightarrow 0$ when $k \rightarrow \infty$, then also $B^{k} \rightarrow 0$.
(b) Suppose S is a fixed invertible 3 by 3 matrix.

This question is about all the matrices A that are diagonalized by S, so that $S^{-1} A S$ is diagonal. Show that these matrices A form a subspace of 3 by 3 matrix space. (Test the requirements for a subspace.)
(c) Give a basis for the space of 3 by 3 diagonal matrices. Find a basis for the space in part (b) - all the matrices A that are diagonalized by S.
9. (11 points) This square network has 4 nodes and 6 edges. On each edge, the direction of positive current $w_{i}>0$ is from lower node number to higher node number. The voltages at the nodes are $\left(v_{1}, v_{2}, v_{3}, v_{4}\right.$.)
(a) Write down the incidence matrix A for this network (so that $A v$ gives the 6 voltage differences like $v_{2}-v_{1}$ across the 6 edges). What is the rank of A ? What is the dimension of the nullspace of A^{T} ?
(b) Compute the matrix $A^{T} A$. What is its rank? What is its nullspace?
(c) Suppose $v_{1}=1$ and $v_{4}=0$. If each edge contains a unit resistor, the currents $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)$ on the 6 edges will be $w=-A v$ by Ohm's Law. Then Kirchhoff's Current Law (flow in $=$ flow out at every node) gives $A^{T} w=0$ which means $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{v}=\mathbf{0}$. Solve $A^{T} A v=0$ for the unknown voltages v_{2} and v_{3}. Find all 6 currents w_{1} to w_{6}. How much current enters node 4?

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

