Your PRINTED name is: $\quad 1$
Your recitation number or instructor is
2.
3.
4.

1. Forward elimination changes $A \mathbf{x}=\mathbf{b}$ to a row reduced $R \mathbf{x}=\mathbf{d}$: the complete solution is

$$
\mathbf{x}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+\mathbf{c}_{1}\left[\begin{array}{c}
2 \\
1 \\
0
\end{array}\right]+\mathbf{c}_{2}\left[\begin{array}{c}
5 \\
0 \\
1
\end{array}\right]
$$

(a) ($\mathbf{1 4}$ points) What is the 3 by 3 reduced row echelon matrix R and what is \mathbf{d} ?
(b) (10 points) If the process of elimination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3 , what matrix connects R and \mathbf{d} to the original A and \mathbf{b} ? Use this matrix to find A and \mathbf{b}.
2. Suppose A is the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 2 & 2 \\
0 & 3 & 8 & 7 \\
0 & 0 & 4 & 2
\end{array}\right]
$$

(a) (16 points) Find all special solutions to $A x=0$ and describe in words the whole nullspace of A.
(b) (10 points) Describe the column space of this particular matrix A. "All combinations of the four columns" is not a sufficient answer.
(c) (10 points) What is the reduced row echelon form $R^{*}=\operatorname{rref}(B)$ when B is the 6 by 8 block matrix

$$
B=\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right] \text { using the same } A ?
$$

3. (16 points) Circle the words that correctly complete the following sentence:
(a) Suppose a 3 by 5 matrix A has rank $r=3$. Then the equation $A x=b$ (always / sometimes but not always)
has (a unique solution / many solutions / no solution).
(b) What is the column space of A ? Describe the nullspace of A.
4. Suppose that A is the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
6 & 5 \\
2 & 4
\end{array}\right]
$$

(a) (10 points) Explain in words how knowing all solutions to $A \mathbf{x}=\mathbf{b}$ decides if a given vector \mathbf{b} is in the column space of A.
(b) (14 points) Is the vector $\mathbf{b}=\left[\begin{array}{c}8 \\ 28 \\ 14\end{array}\right]$ in the column space of A ?

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

