18.06 Quiz 3 Solutions
sor Strang

May 8, 2010
Profes-

Your PRINTED name is: \qquad 1.

Your recitation number is \qquad 2.
3.
\qquad

1. (40 points) Suppose u is a unit vector in R^{n}, so $u^{T} u=1$. This problem is about the n by n symmetric matrix $H=I-2 u u^{T}$.
(a) Show directly that $H^{2}=I$. Since $H=H^{T}$, we now know that H is not only symmetric but also \qquad
Solution Explicitly, we find $H^{2}=\left(I-2 u u^{T}\right)^{2}=I^{2}-4 u u^{T}+4 u u u^{T} u u^{T}$ (2 points): since $u^{T} u=1, H^{2}=I$ (3 points). Since $H=H^{T}$, we also have $H^{T} H=1$, implying that H is an orthogonal (or unitary) matrix.
(b) One eigenvector of H is u itself. Find the corresponding eigenvalue.

Solution Since $H u=\left(I-2 u u^{T}\right) u=u-2 u u^{T} u=u-2 u=-u, \lambda=-1$.
(c) If v is any vector perpendicular to u, show that v is an eigenvector of H and find the eigenvalue. With all these eigenvectors v, that eigenvalue must be repeated how many times? Is H diagonalizable? Why or why not?

Solution For any vector v orthogonal to u (i.e. $u^{T} v=0$), we have $H v=\left(I-2 u u^{T}\right) v=$ $v-2 u u^{T} v=v$, so the associated λ is 1 . The orthogonal complement to the space spanned by u has dimension $n-1$, so there is a basis of $(n-1)$ orthonormal eigenvectors with this eigenvalue. Adding in the eigenvector u, we find that H is diagonalizable.
(d) Find the diagonal entries H_{11} and $H_{i i}$ in terms of u_{1}, \ldots, u_{n}. Add up $H_{11}+\ldots+H_{n n}$ and separately add up the eigenvalues of H.

Solution Since i th diagonal entry of $u u^{T}$ is u_{i}^{2}, the i diagonal entry of H is $H_{i i}=1-2 u_{i}^{2}$
(3 points). Summing these together gives $\sum_{i=1}^{n} H_{i i}=n-2 \sum_{i=1}^{n} u_{i}^{2}=n-2$ (3 points).
Adding up the eigenvalues of H also gives $\sum \lambda_{i}=(1)-1+(n-1)(1)=n-2$ (4 points).
2. (30 points) Suppose A is a positive definite symmetric n by n matrix.
(a) How do you know that A^{-1} is also positive definite? (We know A^{-1} is symmetric. I just had an e-mail from the International Monetary Fund with this question.)

Solution Since a matrix is positive-definite if and only if all its eigenvalues are positive (5 points), and since the eigenvalues of A^{-1} are simply the inverses of the eigenvalues of A, A^{-1} is also positive definite (the inverse of a positive number is positive) (5 points).
(b) Suppose Q is any orthogonal n by n matrix. How do you know that $Q A Q^{T}=Q A Q^{-1}$ is positive definite? Write down which test you are using.

Solution Using the energy text ($x^{T} A x>0$ for nonzero x), we find that $x^{T} Q A Q^{T} x=$ $\left(Q^{T} x\right)^{T} A\left(Q^{T} x\right)>0$ for all nonzero x as well (since Q is invertible). Using the positive eigenvalue test, since A is similar to $Q A Q^{-1}$ and similar matrices have the same eigenvalues, $Q A Q^{-1}$ also has all positive eigenvalues. (5 points for test, 5 points for application)
(c) Show that the block matrix

$$
B=\left[\begin{array}{ll}
A & A \\
A & A
\end{array}\right]
$$

is positive semidefinite. How do you know B is not positive definite?
Solution First, since B is singular, it cannot be positive definite (it has eigenvalues of 0). However, the pivots of B are the pivots of A in the first n rows followed by 0 s in the remaining rows, so by the pivot test, B is still semi-definite. Similarly, the first n upper-left determinants of B are the same as those of A, while the remaining ones are 0s, giving another proof. Finally, given a nonzero vector

$$
u=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where x and y are vectors in \mathbf{R}^{n}, one has $u^{T} B u=(x+y)^{T} A(x+y)$ which is nonnegative (and zero when $x+y=0$).
3. (30 points) This question is about the matrix

$$
A=\left[\begin{array}{cc}
0 & -1 \\
4 & 0
\end{array}\right]
$$

(a) Find its eigenvalues and eigenvectors.

Write the vector $u(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ as a combination of those eigenvectors.
Solution Since $\operatorname{det}(A-\lambda I)=\lambda^{2}+4$, the eigenvalues are $2 i,-2 i$ (4 points). Two associated eigenvectors are $\left[\begin{array}{ll}1 & -2 i\end{array}\right]^{T},\left[\begin{array}{ll}1 & 2 i\end{array}\right]^{T}$, though there are many other choices (4 points). $u(0)$ is just the sum of these two vectors (2 points).
(b) Solve the equation $\frac{d u}{d t}=A u$ starting with the same vector $u(0)$ at time $t=0$.

In other words: the solution $u(t)$ is what combination of the eigenvectors of A ?
Solution One simply adds in factors of $e^{\lambda t}$ to each term, giving

$$
u(t)=e^{2 i t}\left[\begin{array}{c}
1 \\
-2 i
\end{array}\right]+e^{-2 i t}\left[\begin{array}{c}
1 \\
2 i
\end{array}\right]
$$

(c) Find the 3 matrices in the Singular Value Decomposition $A=U \Sigma V^{T}$ in two steps.
-First, compute V and Σ using the matrix $A^{T} A$.
-Second, find the (orthonormal) columns of U.
Solution Note that $A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}$, so the diagonal entries of Σ are simply the positive roots of the eigenvalues of

$$
A^{T} A=\left[\begin{array}{cc}
0 & 4 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
4 & 0
\end{array}\right]=\left[\begin{array}{cc}
16 & 0 \\
0 & 1
\end{array}\right]
$$

i.e. $\sigma_{1}=4, \sigma_{2}=1$. Since $A^{T} A$ is already diagonal, V is the identity matrix. The columns of U should satisfy $A u_{1}=\sigma_{1} v_{1}, A u_{2}=\sigma_{2} v_{2}$: by inspection, one obtains

$$
u_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], U=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.06 Linear Algebra

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

