Exercises on solving $A\mathbf{x} = \mathbf{b}$ and row reduced form R

Problem 8.1: (3.4 #13.(a,b,d) *Introduction to Linear Algebra:* Strang) Explain why these are all false:

- a) The complete solution is any linear combination of \mathbf{x}_p and \mathbf{x}_n .
- b) The system $A\mathbf{x} = \mathbf{b}$ has at most one particular solution.
- c) If *A* is invertible there is no solution \mathbf{x}_n in the nullspace.

Problem 8.2: (3.4 #28.) Let

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} \text{ and } \mathbf{c} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Use Gauss-Jordan elimination to reduce the matrices $\begin{bmatrix} U & 0 \end{bmatrix}$ and $\begin{bmatrix} U & \mathbf{c} \end{bmatrix}$ to $\begin{bmatrix} R & 0 \end{bmatrix}$ and $\begin{bmatrix} R & \mathbf{d} \end{bmatrix}$. Solve $R\mathbf{x} = \mathbf{0}$ and $R\mathbf{x} = \mathbf{d}$.

Check your work by plugging your values into the equations $U\mathbf{x} = \mathbf{0}$ and $U\mathbf{x} = \mathbf{c}$.

Problem 8.3: (3.4 #36.) Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have the same (complete) solutions for every **b**. Is it true that A = C?

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.