18.075 In-class Exam \# 1

Wednesday, September 29, 2004
Justify your answers. Cross out what is not meant to be part of your final answer. Total number of points: 45.
I. (5 pts) Show that for any complex numbers z_{1} and z_{2},

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right|
$$

II. (5 pts) Find all possible values of

$$
(-\sqrt{3}+i)^{1 / 5} .
$$

III.

1. (3 pts) Can the function $u(x, y)=x^{2}-y^{2}-x-y$ be the REAL part of an analytic function $f(z)=$ $u(x, y)+i v(x, y)$? Hint: You may use the Laplace equation, if you wish.
2. (5 pts) Determine all functions $v(x, y)$ such that $f(z)=u(x, y)+i v(x, y)$ is analytic.
3. (3 pts) Find explicitly as a function of z the $f(z)$ such that

$$
f(z)=u(x, y)+i v(x, y) .
$$

IV. (6 pts) Compute the line integral

$$
\int_{C} \frac{\left(z^{3}+z^{2}+z+1\right)}{z^{4}} d z
$$

where C is the LOWER half-circle centered at 0 joining $\frac{-1-i}{\sqrt{2}}$ and $\frac{1-i}{\sqrt{2}}$ in the positive (counterclockwise) sense.
V. Let

$$
f(z)=\frac{1}{(2-z)(z+3)} .
$$

1. (2 pts) Write $f(z)$ as a sum of fractions, i.e.,

$$
f(z)=\frac{A}{z-2}+\frac{B}{z+3}
$$

2. (3 pts) Explain whether it is possible to expand $f(z)$ in Laurent (or Taylor) power series of:
(i) z, that converges in $0 \leq|z|<3$?
(ii) z, that converges in $3<|z|$?
(iii) $z+1$, that converges in $1<|z+1|<4$?
3. (4 pts) Write the Laurent series expansion of $f(z)$ for $5<|z-2|<\infty$ as a power series of $(z-2)$.
VI. (6 pts) Let

$$
f(z)=\frac{1}{\left(z^{2}+z\right)(z+2)^{3}} .
$$

Compute the integral of $f(z)$ on the circles of center 1 and radii $1 / 2,3 / 2$, and 100 , respectively.
VII. (3 pts) Determine where in the complex plane the following functions are analytic (\bar{z} is the complex conjugate of z):
(i) $\frac{e^{z}}{\sin z}$
(ii) $z(\bar{z}+i)$
(iii) $e^{\frac{1}{z-1}}$
VIII. (3 pts-BONUS) Determine the constant A so that the following function is analytic everywhere.

$$
f(z)= \begin{cases}A \frac{\cosh z-1}{z^{2}} & \text { if } z \neq 0 \\ 1 & \text { if } z=0\end{cases}
$$

