Justify your answers. Cross out what is not meant to be part of your final answer. Total number of points: 50
I. (5 pts) Show that for any complex numbers z_{1} and z_{2},

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

II. (5 pts) Find all the possible values of

$$
(1-\sqrt{3} i)^{1 / 3}
$$

III. (Total 10 pts$)$

1. (3 pts) Can the function $v(x, y)=4 x y+y$ be the imaginary part of an analytic function? Explain.
2. (5 pts) Determine all the functions $u(x, y)$ such that $u(x, y)+i v(x, y)$ is analytic
3. (2 pts) Find the analytic function $f(z)$ explicitly in terms of z so that

$$
f(z)=u(x, y)+i v(x, y)
$$

IV. (5 pts) Compute the line integral

$$
\int_{C} \frac{\left(z^{3}-2\right)}{z^{4}} d z
$$

where C is the left half-circle joining $-2 i$ and $2 i$.
V. (Total 12 pts$)$ Let

$$
f(z)=\frac{1}{z^{2}-5 z+6} .
$$

1. (3 pts) Write $f(z)$ as a sum of two fractions, i.e.,

$$
f(z)=\frac{A}{z-z_{1}}+\frac{B}{z-z_{2}}
$$

calculate the constants A and B. What are the points z_{1} and z_{2} ?
2. (5 pts) Explain whether it is possible to expand $\mathrm{f}(\mathrm{z})$ in Laurent (or Taylor) power series of:
(i) z, that converges in the region $0 \leq|z|<3$?
(ii) $z+1$, that converges in the region $2<|z+1|<3$?
(iii) $z+1$, that converges in the region $3<|z+1|$?
3. (4 pts) Write the Laurent series expansion of $f(z)$ in $|z-2|<1$ as a power series of $(z-2)$.
VI. (5 pts) Let

$$
f(z)=\frac{1}{\left(z^{2}+2\right)\left(z^{2}+3\right)}
$$

Compute the integral of $f(z)$ on the circles of center $-i$ and radii $1 / 4,1$, and 4 , respectively.
VII. (Total 5 pts) Show in an easy way that $\oint_{C} d z f(z)=0$ where C is the circle of radius 1 centered at the origin, and

1. $(1 \mathrm{pt}) f(z)=e^{z^{2}} \sin z$
2. $(2 \mathrm{pts}) f(z)=\frac{1}{z^{10}}$
3. (2 pts) $f(z)=\tan z$
VIII. (3 pts) Prove the Cauchy Integral formula,

$$
\oint_{C} \frac{f(\alpha)}{\alpha-b} d \alpha=2 \pi i f(b)
$$

where C is a closed contour with the point b in its interior and $f(z)$ is a function analytic everywhere.

