Justify your answers. Cross out what is not meant to be part of your solution. Total number of points: 60 .
I. Consider the integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \frac{x \sin x}{\left(x^{2}-\pi^{2}\right)\left(x^{2}+1\right)} d x \tag{1}
\end{equation*}
$$

1. (2pts) By replacing x by the complex variable z, locate and characterize all singularities of the integrand (viewed as a function of z).
2. (2pts) Locate and characterize all the singularities of $\frac{z e^{i z}}{\left(z^{2}-\pi^{2}\right)\left(z^{2}+1\right)}$, i.e., repeat part (a) after replacing $\sin x=\operatorname{Im}\left(e^{i x}\right)$ by $e^{i x}$.
3. (6 pts) Define the principal value and indented contours in order to evaluate the given integral I of (1) above. In particular, state which parts of the contours finally contribute zero and why.
4. (10pts) Evaluate the requisite integral I by use of the residue theorem.
II. (15pts) Consider the real integral

$$
I=\int_{0}^{\infty} \frac{x}{x^{4}+1} d x
$$

Evaluate I by use of the residue theorem. Hint: Integrate $f(z)=\frac{z}{z^{4}+1} \quad(z=$ $x+i y)$ around the closed contour consisting of the portions of the x (real) and y (imaginary) axes for which $0 \leq x \leq R$ and $0 \leq y \leq R$, and a quadrant of the circle $|z|=R$, and finally let $R \rightarrow \infty$.
III. Find the region of convergence of the following series by using the ratio or Cauchy (root) test, where x is real.

1. $(4 \mathrm{pts}) \sum_{n=0}^{\infty} \frac{x^{n}}{n^{n}}$.
2. $(4 \mathrm{pts}) \sum_{n=0}^{\infty} \frac{n!}{(2 n)!}(x+2)^{n}$.
IV. Locate and classify the singular points of the following differential equations.
3. $(2 \mathrm{pts}) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0$.
4. $(3 \mathrm{pts}) x^{2} \frac{d^{2} y}{d x^{2}}-\left(x^{2}+2\right) \frac{d y}{d x}-(x+1) y=0$.
V. Consider the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+\left(x^{2}-x\right) \frac{d y}{d x}+y=0
$$

1. (6 pts) By substituting $y=\sum_{n=0}^{\infty} A_{n} x^{n}$, express the left-hand side of the differential equation as a power series, each term involving the (common) factor x^{n}.
2. (6 pts) Determine the recurrence formula for the coefficients A_{n}. (You are NOT asked to find the final solution $y(x)$.) How many independent solutions does this method give?
