18.075 Practice Test 1 for Exam 3

November 23, 2004
Justify your answers. Cross out what is not meant to be part of your solution.
Total number of points: 75 .
I. 1. (5 pts) Find the region of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{(n+1)^{n}}
$$

2. (5 pts) Find the region of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{2^{n}+n} x^{3 n}
$$

II. 1. (6 pts) Locate all singularities of the ODE

$$
(1-\cos x) y^{\prime \prime}+(\sin x) y^{\prime}+y=0
$$

2. (4 pts) Classify the point $x_{0}=0$ for the ODE of part (1).
III. Classify the point $x_{0}=0$ for the following ODEs:
3. (5 pts)

$$
y^{\prime \prime}-(\ln x) y^{\prime}+y=0
$$

2. (5 pts)

$$
(\sin \sqrt{x}) y^{\prime \prime}+\sqrt{x} y^{\prime}-y=0 .
$$

IV. Consider the ODE

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+\left(3-x^{2}\right) y=0
$$

We seek solutions of this ODE around $x_{0}=0$ by the method of Frobenius, i.e., $y=$ $x^{s} \sum_{k=0}^{\infty} A_{k} x^{k}$.

1. (5 pts) Write the ODE in the canonical form

$$
R(x) y^{\prime \prime}+\frac{1}{x} P(x) y^{\prime}+\frac{1}{x^{2}} Q(x) y=0 .
$$

2. (7 pts) Find the exponent(s) s by solving the indicial equation.
3. (13 pts) Write down the nonzero functions $g_{n}(s)$ from the Frobenius theory. Derive the recurrence formula for A_{k}.
4. (15 pts) How many independent solutions can you find in this way? Solve the recurrence relation and find the (general) coefficient A_{k}.
5. (5 pts) Can you write down a general form of the solution $y(x)$? Explain.
