18.075 Practice Test 3 for Quiz 3

December 3, 2004
Justify your answers. Cross out what is not meant to be part of your solution. Total number of points: 120. Time: 120 min .
I. (20 pts) Starting with the Frobenius series for the Bessel functions, show that:
(a) $J_{0}^{\prime}(x)=-J_{1}(x)$,
(b) $\frac{d}{d x}\left[x J_{1}(x)\right]=x J_{0}(x)$.
II. (20 pts) Use the relations of Prob. I in order to evaluate the following integrals.
(a)

$$
\int_{0}^{1} d x J_{0}(x) J_{1}(x)
$$

Is the result positive or negative?
(b)

$$
\int_{0}^{1} d x x^{3} J_{0}(x)
$$

III. (20 pts) A scientist tries to make up a model that describes the exponential growth of a bacterium population, described by the quantity $y(t)$ as a function of time $t(t \geq 0)$. He finally comes up with the following ODE for $y(t)$:

$$
y^{\prime \prime}(t)+\frac{1}{t} y^{\prime}(t)-y(t)=0
$$

with the initial condition $y(0)=1$. Find $y(t)$ and explain why this model can indeed describe exponential growth in time.
IV. A rectangular membrane of dimensions $2 a$ and $2 b(a, b>0)$ vibrates on the (x, y) plane with frequency ω. The deflection $z(x, y)$ of the membrane from the plane is described by the PDE

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}+k^{2} z=0, \quad-a \leq x \leq a,-b \leq y \leq b
$$

where $k^{2}=\omega^{2} / c^{2}$ and c is a constant. This $z(x, y)$ satisfies the boundary conditions

$$
z(\pm a, y)=0, \quad z(x, \pm b)=0
$$

(a) (10 pts) Substituting a solution $z(x, y)=X(x) Y(y)$ into the PDE, find the ODEs for $X(x)$ and $Y(y)$.
(b) (20 pts) Applying the boundary conditions for z, solve the ODEs for X and Y. What are the characteristic frequencies ω of the membrane?
V. The following problem involves the method of Frobenius to obtain the general solution near $x=0$ of the ODE

$$
x^{2} y^{\prime \prime}+x\left(x^{2}-\lambda\right) y^{\prime}+\left(x^{2}+\lambda\right) y=0 .
$$

(a) (2 pts) Write the ODE in its canonical form

$$
R(x) y^{\prime \prime}+\frac{P(x)}{x} y^{\prime}+\frac{Q(x)}{x^{2}} y=0
$$

(b) (3 pts) Find the indicial equation, $f(s)=0$, of the ODE and solve it.
(c) (5 pts) If λ is not an integer, how many solutions can be found by the method of Frobenius and why? What if $\lambda=1$?
(d) (5 pts) Assume that $\lambda>1$ is an integer. For the smallest value of s of part (b), write down the formulas for the nonzero functions g_{n} and the recursion equation for A_{n};
(e) (5 pts) How many linearly independent solutions can you find with the method of Frobenius if $\lambda>1$ is an even integer?
VI. (10 pts) For what characteristic values of the parameter λ is the following ODE a modified Bessel ODE?

$$
x^{2} y^{\prime \prime}+x\left(x^{2}-\lambda\right) y^{\prime}+\left(x^{2}+\lambda\right) y=0
$$

