18.075 Practice Test IV for Quiz 3

December 5, 2004
Justify your answers. Cross out what is not meant to be part of your final answer.
Total number of points: 80 . Time: 80 min .
I. Find the domain of convergence of the following series:

1. (1 pts)

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{n}(x-2)^{n}}{n!}
$$

2. (2 pts)

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where $a_{n}=n^{2}+n$ for n even and $a_{n}=2 n^{3}$ for n odd.
3. (2 pts)

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where $a_{n}=n^{2}$ for n divisible by 3 and n otherwise.
II. (10 pts) Use the method of Frobenius to obtain the general solution of the following ODE, near $x=0$:

$$
x\left(1-x^{2}\right) y^{\prime \prime}-\left(1+x^{2}\right) y^{\prime}+3 x y=0 .
$$

How many linearly independent solutions can you find? Why?
III. 1. (10 pts) Let λ be a real parameter. Find the values of λ such that the following ODE can be solved by transforming it to a Bessel equation:

$$
x y^{\prime \prime}+\left(1+4 x^{2}\right) y^{\prime}+\left(3 x+\lambda x^{3}\right) y=0 .
$$

Hint: The solution $y(x)$ should involve modified Bessel functions.
2. (5 pts) For the values of λ of part (1), solve the ODE with the condition $y(0)=-2$.
IV. (5 pts) Write the ODE

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x(3+x) \frac{d y}{d x}-3 y+\lambda y=0
$$

in the standard form

$$
\frac{d}{d x}\left(p \frac{d y}{d x}\right)+q y+\lambda r y=0
$$

V. (5 pts) By considering the characteristic functions of the problem

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\lambda x y=0, \quad 0 \leq x \leq A
$$

with the boundary conditions

$$
y(0)=1 ; \quad y(A)=0
$$

show that, if λ_{1} and λ_{2} are two different characteristic values, then

$$
\int_{0}^{A} x J_{0}\left(\sqrt{\lambda_{1}} x\right) J_{0}\left(\sqrt{\lambda_{2}} x\right) d x=0
$$

VI. (5 pts) A Sturm-Liouville problem on the interval $[a, b]$ has boundary conditions

$$
y^{\prime}(a)=0 \quad \text { and } \quad y(b)=0
$$

What can one deduce about any two characteristic functions ϕ_{n} and ϕ_{p} ?
VII. 1. (10 pts) Find the Fourier cosine series of $f(x)=e^{x}+1$ in $(0, \pi)$.
2. (5 pts) Can you differentiate the series of part (1) and obtain the Fourier sine series expansion of $f^{\prime}(x)=e^{x}$?
3. (5 pts) Find the Fourier sine series expansion in $(0, l)$ of the function: $h(x)=$ -1 in $[0, l / 2]$ and $h(x)=2$ in $(l / 2, l]$.
VIII. 1. (10 pts) If $f(x)=(\pi-|x|)^{2}$ for $-\pi<x<\pi$, expand $f(x)$ in cosine series.
2. (5 pts) From the series of part (1), deduce that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

