Problem set 3 due Nov. 18

(1) In the MLA notes, $\S 3$, Exercise 7.
(2) In the MLA notes, §4, Exercise 5.
(3) Let V be a 3-dimensional vector space, $\langle v, w\rangle$ an inner product on V and $\Omega \in \Lambda^{3}\left(V^{*}\right), \Omega \neq 0$.
(a) Given $\mu \in \Lambda^{2}\left(V^{*}\right)$ show that there exists a unique vector, $v_{\mu} \in V$, such that for all $\ell \in V^{*}$:

$$
\begin{equation*}
\mu \wedge \ell=\ell\left(v_{\mu}\right) \Omega \tag{**}
\end{equation*}
$$

Hint: It's clear that $\mu \wedge \ell=c_{\ell} \Omega$ for some constant, c_{ℓ}, depending on ℓ. Show that this constant depends linearly on ℓ. Then show that there exists a unique vector $v_{\mu} \in V$ with the property:

$$
c_{\ell}=\ell\left(v_{\mu}\right)
$$

for all $\ell \in V^{*}$.
(b) For $v \in V$, let $\ell_{v} \in V^{*}$ be the linear functional

$$
w \in V \rightarrow\langle v, w\rangle
$$

Show how to define a cross product on V by requiring that

$$
v_{1} \times v_{2}=v_{\mu} \Leftrightarrow \mu=\ell_{v_{1}} \wedge \ell_{v_{2}} .
$$

Show that this cross product is linear in v_{1} and v_{2} and satisfies $v_{1} \times v_{2}=$ $-v_{2} \times v_{1}$.
(c) Let $V=\mathbb{R}^{3}$. Show that if $\langle v, w\rangle$ is the Euclidean inner product on \mathbb{R}^{3}, e_{1}, e_{2}, and e_{3}, the standard basis vectors of \mathbb{R}^{3}, and $\Omega=e_{1} \wedge e_{2} \wedge e_{3}$ the standard volume form, then this cross product is the standard cross product.
(4) Let U be an open subset of \mathbb{R}^{3} and let

$$
\begin{aligned}
& \mu_{1}=d x_{2} \wedge d x_{3} \\
& \mu_{2}=d x_{3} \wedge d x_{1}
\end{aligned}
$$

and

$$
\mu_{3}=d x_{1} \wedge d x_{2} .
$$

(a) If $f: U \rightarrow \mathbb{R}$ is a function of class C^{1} show that $d f=G_{1} d x_{1}+G_{2} d x_{2}+$ $G_{3} d x_{3}$ where $G=\left(G_{1}, G_{2}, G_{3}\right)=\operatorname{grad} f$.
(b) If $\omega=F_{1} d x_{1}+F_{2} d x_{2}+F_{3} d x_{3}$ is a one-form on U of class C^{1} show that $d \omega=G_{1} \mu_{1}+G_{2} \mu_{2}+G_{3} \mu_{3}$ where $G=\operatorname{curl} F$.
(c) If $\omega=F_{1} \mu_{1}+F_{2} \mu_{2}+F_{3} \mu_{3}$ is a two-form on U of class C^{1} show that $d \omega=g d x_{1} \wedge d x_{2} \wedge d x_{3}$ where $g=\operatorname{div}(F)$.

