
MATH 18.152 COURSE NOTES - CLASS MEETING # 2

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 2: The Diffusion (aka Heat) Equation

1. Introduction to the Heat Equation

def
The heat equation for a function u(t, x), x

(1.0.1)

= x1, , xn Rn, is

>

ut D∆u

(

f

⋯

t, x

)

.

∈

Here, the constant D 0 is the diffusion coefficient, f t, x is an inhomogeneous term, and ∆ is the
Laplacian operator, which takes the following

−

form

=

in

( )

(

Car
)

tesian coordinates:

n
def

(1.0.2) ∆ ∂2i .
i 1

Equation (1.0.1) is first-order and linear.

= ∑
=

2. A simple model of heat flow that leads to the heat equation

We now give an example of a simple
B

mo
⊂

del of heat flow that leads to the heat equation. Consider
a homogeneous, isotropic solid body Rn (n = 3 is the physically relevant case) described by the
following physical properties:

def
(2.0.3) ρ = mass density ∼ [mass] × [Volume −

(2.0.4) e

] 1

def

= constant,

t, x thermal energy per unit mass energy mass 1.

Let’s also assume that

(

heat

) =

is supplied to the body by an

∼

external

[ ]

source

× [

wh

]−

ich pumps in heat at
the following rate per unit mass:

(2.0.5) R energy time −1 mass −1.

The
(

total
)

thermal E t;V energy contained in a body sub-volume V at time t is the integral
of e t, x over V

∼ [ ] × [ ] × [ ]

( ) ⊂ B

∶

E(t;V )
def

(2.0.6) = ∫ ρe t, x dnx.
V

The rate of change of the total energy contained in V

(

is

)

d d
(2.0.7) E(t;V ) = ∫ ρe(t, x)dnx ρ∂ e dnt t, x x.

dt dt V V

In (2.0.7), we have assumed that you can differentiate

= ∫

under the

(

in

)

tegral; we can do this when
e t, x is a “nice” function. We will be more precise about the meaning of “nice” later in the course.

1

( )
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Let’s now address the factors that can cause d
dtE t;V to be non-zero. That is, let’s account for

the factors that cause the energy within the volume
account for only two factors. First, by integrating

(

V
)

to change. In our simple model, we will
(2.0.5) over V, we deduce the rate of energy

pumped into the sub-volume V by the external source:

(2.0.8) ∫ ρR(t, x energy

w

)dnx time −1.
V

Second, we ill also assume that heat energy

∼

is

[

flowing

] ×

throughout

[ ]

the body, and that flow can
be modeled by a heat flux vector q

(2.0.9) q ∼ [energy] × [time]−1 × [area]−1,

which specifies the direction and magnitude of heat flow across a unit area. That is, if dσ ∂V is
ˆ ˆa small surface area with outward unit-normal N, then q N is the energy flowing out of the small

surface. Thus, the rate of heat energy flowing into V is

⊂

⋅

−∫
ˆ(2.0.10) q Ndσ qdnx energy time 1,

∂V

where

⋅ = −∫
V

the equality follows from the divergence

∇ ⋅

theorem.

∼ [ ] × [ ]−

We will connect the various energies together by assuming the following energy conservation
“law:” The rate of change of total energy in the sub-volume V is equal to the rate of heat energy
flowing into V + rate of heat energy supplied by the external source. Using (2.0.7), (2.0.8), and
(2.0.10), we see that this “law” takes the following form in terms of integrals:

(2.0.11) ρ∂te t, x dnx qdnx ρR dnx.
V V V

Since the above relations are

∫

assumed

( )

to hold

= −

for

∫ ∇

all

⋅

body

+

sub-v

∫

olumes V, the integrands must be
equal (again, as long as they are nice):

(2.0.12) ρ∂te(t, x

2.1. Fourier’s law. In order to turn (2.0.12)

)

(

in

= −∇ ⋅ q + ρR.

)

to a PDE that we can study, we need to make an-
other assumption about e t, x , q, and their relation to the temperature u t, x . Fourier hypothesized
the following “Fourier’s Law of heat conduction:”

( )

(2.1.1) q(t, x) = −κ∇u

(

def
where

(t, x),

κ > 0 is the thermal conductivity, and ∇u ∂1u, , ∂nu is the spatial derivative gradient
of
∇

the
( )

temperature u t, x . We will assume that κ is a constant. Recall that at each fixed t,
u t,

{

x
∣

poin
( )

ts
=

in the direction of maximal increase

= (

and that

⋯

u

)

t, x is perpendicular to the level
sets x u x constant

)

. Thus, (2.1.1) states that heat flows
decreasing temperature) and that the flow is perpendicular to the

∇ ( )

} “from hot to cold” (i.e. towards
surfaces of constant temperature.

Remark 2.1.1. (2.1.1) is NOT A FUNDAMENTAL LAW OF NATURE ! It is a simple but rea-
sonable (under certain circumstances) model!
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We need one more assumption in order to derive our PDE - we need to relate e t, x to u t, x . We
will assume a very simple model, which is experimentally verified by many subs

(

tances
)

in
(

moderate
temperature ranges:

)

(2.1.2) e cυu.

Here, cυ > 0 is the specific heat at constant volume
many of our previous assumptions, (2.1.2) is also

=

. We also assume that cυ is constant. Like
just a simple model, and not a fundamental law

of nature.
Finally, we combine (2.0.12), (2.1.1), and (2.1.2), and use the identity ∇ ⋅∇u = ∆u, thus arriving

at

κ 1
(2.1.3) ∂tu t, x ∆u R.

cυρ cυ

This is the heat equation (1.0.1) with D

(

κ
cυ

)

ρ

=

and f

+

1
c R.
υ

3.

=

Well-posedness

=

Remember, one of the main goals of PDE theory is to figure out which kind of data lead to a
unique solution. It is not always obvious which kind of data we are allowed to specify in order to
solve the equation. When we have a PDE and a notion of data such that the data always lead to a
unique solution, and the solution depends “continuously” on the data, we say that the problem is
well-posed.

3.1. Dirichlet boundary conditions. Let’s study Dirichlet boundary conditions for the heat
equation in n 1 dimensions. Think of a one-dimensional rod with endpoints at x 0 and x L.
Let’s set most

=

of the constants equal to 1 for simplicity, and assume that there is no external source
pumping energy into the rod, i.e., that there is no inhomogeneous term f.

= =

Then we could, for example, prescribe the temperature of the rod at t 0 (sometimes called
Cauchy data) and also at the boundaries x = 0 and x = L for all times t

=

∈ [0, T ] ∶

(3.1.1)
⎪⎪⎪
⎧

u
=

⎨

∂ ) ×

⎪

t − ) ∈ ( ( )

⎪ u

(

As we will see, under

(

u D∂2xu 0, t, x 0, T 0, L ,

⎩⎪ (

0, x g x , x 0, L , Cauchy data ,
t,0

) =

) = h0

(

(t
)

), u(t,L) = hL t

suitable assumptions

∈ [ ]

on

(

the

(

), t > 0, Dirichlet data .

functions, g,

)

h0, hL, these conditions lead to a
well-posed problem.

( )

3.2. Neumann (N for Normal!) boundary conditions. Instead of prescribing the temperature
at
=

the boundaries, let’s instead prescribe the inward rate of heat flow (given by Fourier’s law with
κ 1) at the boundaries:

(3.2.1)
⎪⎪⎪
⎧ ∂tu D

0,
− ∂2xu
x x

= 0,
u g ,
∂xu t,0 h0 t ,

(t, x) ∈ (0, T 0, L),
Cauchy data

×

,
∂xu t,L

)

h

(

L t , Neumann data .

Under suitable assumption

⎪

problem.

⎪
⎨ ( ) = ( )

⎪⎩ − (

s on

)

=

the

(

) ( )

functions,

(

g, h

)

0

=

, hL,

(

these

)

conditions

(

also lead

)

to a well-posed
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3.3. Robin boundary conditions. We can also take some linear combinations of the Dirichlet
and Neumann conditions:

⎧⎪⎪⎪
∂tu −D∂2xu

(3.3.1) u 0, x g x
=

(

0 (t, x 0

⎪
⎨ ( (

T 0, L ,

⎩
⎪

) = )

, ,

⎪ − ( ) +

,
( )

Cauc
)

=

hy data ,
∂xu t,0 αu t,0 h0 t

∈ (

,

) × ( )

)

∂xu t,L

where α 0 is a positive constant. Under

( )

suitable

(

ass

) αu t,L hL t , Robin data ,

> u

+

mptions

( )

on

=

the

( )

function

(

s, g, h0, hL

)

, these
conditions also lead to a well-posed problem.

3.4. Mixed boundary conditions. The above three boundary conditions are called homogeneous
because they are of the same type at each end. It is also possible to prescribe one condition at
one endpoint, and a different condition at the other endpoint. These are called mixed boundary
conditions. These conditions also lead to a well-posed problem.

4. Separation of variables

We now discuss a technique, known as separation of variables, that can be used to explicitly
solve certain PDEs. It is especially useful in the study of linear PDEs. Although this technique is
applicable to some important PDEs, it is unfortunately far from universally applicable.

In a

●

nutshell, the separation of variables

(

tec

) =

hnique

( ) (

can

)

be summarized as:

●

Look for a solution of the form u t, x v t w x .
Plug this guess into the PDE and hope that the PDE forces the functions v and w to be
solutions to ODEs that can be solved without too much trouble.

As we will see, when one tries to apply this technique, one quickly runs into difficulties that are
best addressed using techniques from Fourier analysis. We don’t have time right now to give a
detailed introduction to Fourier analysis, but we will return to it later in the course if time permits;
at the moment, we will only show how to use some of these techniques, without fully justifying
them.

A great way to illustrate separation of variables is through an example. Let’s try to solve the
heat equation problem with homogeneous (i.e., vanishing) Dirichlet conditions

⎧⎪⎪⎪
u xx =

⎨
t − u 0, (

( ) =

t,
∈ [

x 0, T 0,1 ,
(4.0.1)

⎪⎪
⎪
⎩

u
(

0, x
) =

x, x
(

0
0

)

,
u t,0 , u t,1

∈ ( ] × [ ]

]

by separation of variables.

) =

1 ,
0,

Remark 4.0.1. Note that such a solution cannot possibly be continuous at the point (0,1 .

We plug in the form u(t, x) = v(t)w(x) into (4.0.1) and discover that

)

v′(t
(4.0.2)

v

)

(t
=
w′′(x

w

)

) (x)
.
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This should hold for all t, x. It therefore must be the case that both sides are equal to a constant,
which we will call λ. We then have

(4.0.3a) v′(t

(4.0.3b) w′′ x

) = ( )

Furthermore, w 0 w 1 0 by the boundary
Let’s address v first, since it requires less

(

work

) =

λv t

λw x .

( ) = ( ) = conditions.

( )

,

to deal with than w. If λ ∈ R, then (4.0.3a) can
be generally solved:

(4.0.4) v(t) = Aeλt

for some A R.
In con

●

trast, the study of w x splits into three cases:

λ 0

∈

( )

= . Then
and B C
λ 0. Then

( ) = + ∈ =

B C

+

0,

=

w x Bx
=

C for
=

some B,C R. The boundary conditions imply that C 0

● >

0
(

, so
) =

that
√
B

+

C 0. Thus, this solution is not very interesting.

+ =

w x
√
Be

+

λx C
√
e

√
λx for some B,C R. The boundary conditions imply that

and Be λ Ce

−

− λ =

√

0, which

√

forces B

∈

= C = 0. This solution is also not very

●

interesting.

λ <

(

0

)

.

=

Then w x B sin λ x C cos λ x for some B,C R. The boundary condition

w

=

0

−

0 forces C 0, so w x B sin λx . The boundary condition w 1 0 then forces
def

λ π2m2 for

( )

some

= ( ∣ ∣ )+

=

m

(

Z
)

,

=

where

(

Z

√
( ∣ ∣ )

)

∈ + + = the set of non-ne

∈

gative integers. The λ are
called eigenvalues, and the corresponding wm are the corresponding eigenve

( )

ctors

=

. Equation
def

(4.0.3a) is called an eigenvalue problem corresponding to 2

We have shown that the only solutions w are of the form wm x
(4.0.4) and the fact that λ π2m2 for our solutions, we have pro

L =

heat equation ∂tu ∂2xu 0 that satisfying the boundary conditi

( ) =

the linear

(

operator .

2πmx), m ∈

∂x

= −

B sin Z+. Using also

− =

duced a family of solutions to the
ons:

(4.0.5) um t, x e−m
2π2t sin mπx , Am R, m Z+.

But we haven’t yet satisfied the initial condition u 0, x x. To do this, we could try using the
superposition principle:

( ) = ( ) ∈ ∈

( ) =

(4.0.6) u t, x
∞

Amum t, x .
m 1

We would have to solve for the Am to

(

achiev

) =

e

∑

the

=

desired

(

initial

)

condition u 0, x x.
Here is a list of things we would have to do to fully solve this problem using

(

this
) =

technique:

(1) Find plausible Am.
(2) Show that the infinite sum (4.0.6) converges.
(3) Show that the infinite sum solves the heat equation.
(4) Show that u t, x satisfies the boundary
(5) Check that lim

(

t→

)

0+ u(t, x) = u(0, x
may or may not hold. We already
point 0,1 .

) =

conditions.
x. We also have to investigate in which sense this limit
know that this equality cannot hold pointwise at the

( )
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(6) Show that there can be no other solution with these initial/boundary conditions (unique-
ness).

Let’s deal with (1) first. If (4.0.6) holds, then at t = 0 ∶

(4.0.7) x = u(0, x) =
∞

A mπ
m

∑
=

mum 0, x Am sin x .
1

This is a Fourier series expansion for the function

(

f

) =
m

∑

∞

=1

x x on the

(

interv

)

al 0,1 .
It
(

is helpful
)

to think of a function f a
) =

(x) as vector in
(

an infinite dimensional vector space and the
sin mπx as basis vectors (however, it is not trivial to show that they form a

[

basis...).

]

Furthermore,
if we introduce the dot product

⟨f(
def

(4.0.8) x

then the basis vectors are orthogonal

), g(x

(do the

)⟩ =

computation

∫
[0,1]

f(x)g(x)dx,

yourself!):

⟨sin(
2

(4.0.9) x)
1 if m n

mπ , sin(πnx

This

)⟩ = {
0
/

if m
=

≠ n.

suggests that the following heuristic computations might be able to be made completely
rigorous:

(4.0.10) ∫
[

f x sin πnx dx f x , sin πnx Am sin mπx , sin πnx
0,1

( ) ( ) = ⟨ ( ) ( )⟩ = ⟨
m

∑

∞

] =

∞

1

Am sin

(

mπx

)

, sin

(

π

)⟩

=
m

∑
=

nx
1

1

⟨ ( ) ( )⟩

= An.
2

Applying this to our function f(x) = x, we integrate by parts to compute that

2 2
(4.0.11) Am = 2∫

2

[
x sin mπx dx x cos mπx x 1

0 cos πnx dx 1 m 1
x .

0,1

We now hope that

]

our solution

( )

is:

= −
mπ

( )∣ == +
mπ ∫[0,1

( = (− ) +

]
)

mπ

(4.0.12) u(t, x) =
m

∑

∞
m 2

=

1 1e m2π2t sin mπx .
1

Remark

(− ) + −

mπ

4.0.2. The individual terms (−1)m+1e−m
2π2t 2

( )

mπ sin mπx are sometimes called the modes
of the solution. Note that

∑
∞

eac
(

h
−

mo
)

de
+ −

is rapidly deca
(

ying
)

at
more, the infinite sum m m2π2t 2

m 1 1 1e mπ sin mπx also

(

an exp
)

onential rate as t . Further-

= decays exponentially in time. Later
in the course we will study the heat equation on all of R, and we will once again see

→∞

that under
suitable assumptions, solutions to the heat equation tend to exponentially decay in time. However,
if we had non-zero Dirichlet conditions for the problem (4.0.1), then the solution might not decay
to 0, but instead to some other state.
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Let’s now answer some of the remaining questions
−

from above.
(2) Thanks to the rapidly decaying in m factor e m2π2

]

t, for y t >
∈ [

an 0, the series (4.0.12) can be
seen to uniformly converge for x 0,1 using one of the standard convergence arguments from
analysis (carefully work through

=

this argument yourself; pg. 9 of your book might be a helpful
reference). The argument for t 0 is much more subtle and is addressed in Theorem 4.1 below.

(3) We already know that eac
>

h mode
−

in (4.0.12) solves the heat equation. So what about the
infinite sum? Again, for any t 0, the e m2π2t factor plus standard results from analysis allow us
to repeatedly differentiate the series term-by-term in both t and x (work through this yourself).
In particular, the >

>

series is smooth (i.e., infinitely differentiable in all variables) for any t 0. In
particular, for t 0, we have that

2 2 2 2 2

(4.0.13a) ∂tu = ∑
∞

=

∂t[(−1)m+1e m 1
m

− π t sin mπx
mπ m

∞
mmπe

1

−m π t sin
1

2 2 2 2 2 2
(4.0.13b) ∂2u

∞

∂2 1 m 1e m π t sin

(

mπx

)] = ∑
=

∞

(−

1

)

mmπe m π t

(mπx ,

x x sin

)

= ∑ [(− ) + − ( )] = ∑
=

(− ) −

=

(mπx),

−

m 1 mπ m 1 mπ

which shows that ∂tu + ∂2xu
(4)

= 0.
The fact that u verifies the correct Dirichlet conditions at x = 0 and x 1 follows from the

fact that each of the modes does.
The remaining two questions require more work. We first quote

=

Fourier analysis to help us understand the Fourier expansion at t
address question 5 in your homework.

Theorem 4.1 (Some basic facts from Fourier analysis).

=

the following theorem from

( )

0. Using this theorem, you will

∥ ∥

If f x is a function such that

f 2
L2

wher

∞

([0,1

e Am
])

def

( )

= ∫
1

0 ∣f(x)∣2dx < ∞

( (

, ( ) ( ) = ∑

= ∫ ) )

then f x can be Fourier-expanded as f x m=1Am sin

2
[0,1] f x sin mπx dx. The infinite sum converges in the sense that

(mπx),

∥f − ∑
N

(4.0.14)
m=

Am sin
1

(mπx

We also have the Parseval identity

)∥L2([0,1]) → 0 as N →∞.

1
(4.0.15) ∥f∥2 2([0,1]) = ∑

∞

=

A2
L m∥ sin(mπx)∥2L2([0,1

m 1

∞

Note that (4.0.15) is an “infinite dimensional Pythagorean the

])

[

or

= ∑
=

A2

1 2 m.
m

em.”
Furthermore, if f is continuous on 0,1], then for any subinterval [a, b] ⊂ (0,1),

N

(4.0.16) f Am sin mπx C0

m 1
([a,b]) 0 as N ,

i.e., the convergence is uniform

∥ − ∑

on

=

any close

(

d subinterval

)∥ →

a, b of the

→∞

open interval 0,1 .

Exercise 4.0.1. Many extensions of Theorem 4.1 are possible.

[ ]

Read Appendix A of

(

your

)

textbook
in order to learn about them.
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