MATH 18.152 COURSE NOTES - CLASS MEETING \# 4

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Class Meeting \#4: The Heat Equation: The Weak Maximum Principle

1. The Weak Maximum Principle

We will now study some important properties of solutions to the heat equation $\partial_{t} u-D \Delta u=0$. For simplicity, we sometimes only study the case of $1+1$ spacetime dimensions, even though analogous properties are verified in higher dimensions.

Theorem 1.1 (Weak Maximum Principle). Let $\Omega \subset \mathbb{R}^{n}$ be a domain. Recall that $Q_{T} \stackrel{\text { def }}{=}$ $(0, T) \times \Omega$ is a spacetime cylinder and that $\partial_{p} Q_{T} \stackrel{\text { def }}{=}\{0\} \times \bar{\Omega} \cup(0, T] \times \partial \Omega$ is its corresponding parabolic boundary. Let $w \in C^{1,2}\left(Q_{T}\right) \cap C\left(\bar{Q}_{T}\right)$ be a solution to the (possibly inhomogeneous) heat equation

$$
\begin{equation*}
w_{t}-D \Delta w=f \tag{1.0.1}
\end{equation*}
$$

where $f \leq 0$. Then $w(t, x)$ obtains its max in the region \bar{Q}_{T} on $\partial_{p} Q_{T}$. Thus, if w is strictly negative on $\partial_{p} Q_{T}$, then w is strictly negative on \bar{Q}_{T}.
Proof. For simplicity, we consider only case of $1+1$ spacetime dimensions. Let ϵ be a positive number, and let $u=w-\epsilon t$. Our goal is to first study u, and then take a limit as $\epsilon \downarrow 0$ to extract information about w. Note that on \bar{Q}_{T} we have $u \leq w$, that $w \leq u+\epsilon T$, and that in Q_{T} we have

$$
\begin{equation*}
u_{t}-D u_{x x}=f-\epsilon<0 \tag{1.0.2}
\end{equation*}
$$

We claim that the maximum of u on $\bar{Q}_{T-\epsilon}$ occurs on $\partial_{p} Q_{T-\epsilon}$. To verify the claim, suppose that $u(t, x)$ has its max at $\left(t_{0}, x_{0}\right) \in \bar{Q}_{T-\epsilon}$. We may assume that $0<t_{0} \leq T-\epsilon$, since if $t_{0}=0$ the claim is obviously true. Under this assumption, we have that $u<w$ and that $w \leq u+\epsilon T$. Similarly, we may also assume that $x \in \Omega$, since otherwise we would have $(t, x) \in \partial_{p} Q_{T-\epsilon}$, and the claim would be true.

Then from vector calculus, $u_{x}\left(t_{0}, x_{0}\right)$ must be equal to 0 . Furthermore, $u_{t}\left(t_{0}, x_{0}\right)$ must also be equal to 0 if $t_{0}<T-\epsilon$, and $u_{t}\left(t_{0}, x_{0}\right) \geq 0$ if $t_{0}=T-\epsilon$. Now since $u\left(t_{0}, x_{0}\right)$ is a maximum value, we can apply Taylor's remainder theorem in x to deduce that for x near x_{0}, we have

$$
\begin{equation*}
u\left(t_{0}, x\right)-u\left(t_{0}, x_{0}\right)=\underbrace{\left.u_{x}\right|_{t_{0}, x_{0}}\left(x-x_{0}\right)}_{0}+\left.u_{x x}\right|_{t_{0}, x^{*}}\left(x-x_{0}\right)^{2} \leq 0 \tag{1.0.3}
\end{equation*}
$$

where x_{*} is some point in between x_{0} and x. Therefore, $u_{x x}\left(t_{0}, x^{*}\right) \leq 0$, and by taking the limit as $x \rightarrow x_{0}$, it follows that $u_{x x}\left(t_{0}, x_{0}\right) \leq 0$. Thus, in any possible case, we have that

$$
\begin{equation*}
u_{t}\left(t_{0}, x_{0}\right)-D u_{x x}\left(t_{0}, x_{0}\right) \geq 0 \tag{1.0.4}
\end{equation*}
$$

which contradicts (1.0.2).
Using $u \leq w$ and that fact that $\partial_{p} Q_{T-\epsilon} \subset \partial_{p} Q_{T}$, we have thus shown that

$$
\begin{equation*}
\max _{\bar{Q}_{T-\epsilon}} u=\max _{\partial_{p} Q_{T-\epsilon}} u \leq \max _{\partial_{p} Q_{T-\epsilon}} w \leq \max _{\partial_{p} Q_{T}} w . \tag{1.0.5}
\end{equation*}
$$

Using (1.0.5) and $w \leq u+\epsilon T$, we also have that

$$
\begin{equation*}
\max _{\bar{Q}_{T-\epsilon}} w \leq \max _{\bar{Q}_{T-\epsilon}} u+\epsilon T \leq \epsilon T+\max _{\partial_{p} Q_{T}} w \tag{1.0.6}
\end{equation*}
$$

Now since w is uniformly continuous on \bar{Q}_{T}, we have that

$$
\begin{equation*}
\max _{\bar{Q}_{T-\epsilon}} w \uparrow \max _{\bar{Q}_{T}} w \tag{1.0.7}
\end{equation*}
$$

as $\epsilon \downarrow 0$. Thus, allowing $\epsilon \downarrow 0$ in inequality 1.0.6, we deduce that

$$
\begin{equation*}
\max _{\bar{Q}_{T}} w=\lim _{\epsilon \downarrow 0} \max _{\bar{Q}_{T-\epsilon}} w \leq \lim _{\epsilon \downarrow 0}\left(\epsilon T+\max _{\partial_{p} Q_{T}} w\right)=\max _{\partial_{p} Q_{T}} w \leq \max _{\bar{Q}_{T}} w . \tag{1.0.8}
\end{equation*}
$$

Therefore, all of the inequalities in 1.0.8 can be replaced with equalities, and

$$
\begin{equation*}
\max _{\bar{Q}_{T}} w=\max _{\partial_{p} Q_{T}} w \tag{1.0.9}
\end{equation*}
$$

as desired.

The following very important corollary shows how to compare two different solutions to the heat equation with possibly different inhomogeneous terms. The proof relies upon the weak maximum principle.
Corollary 1.0.1 (Comparison Principle and Stability). Suppose that v, w are solutions to the heat equations

$$
\begin{array}{r}
v_{t}-D v_{x x}=f \\
w_{t}-D w_{x x}=g \tag{1.0.11}
\end{array}
$$

Then
(1) (Comparison): If $v \geq w$ on $\partial_{p} Q_{T}$ and $f \geq g$, then $v \geq w$ on all of Q_{T}.
(2) (Stability): $\max _{\bar{Q}_{T}}|v-w| \leq \max _{\partial_{p} Q_{T}}|v-w|+T \max _{\bar{Q}_{T}}|f-g|$.

Proof. One of the things that makes linear PDEs relatively easy to study is that you can add or subtract solutions: Setting $u \stackrel{\text { def }}{=} w-v$, we have

$$
\begin{equation*}
u_{t}-D u_{x x}=g-f \leq 0 \tag{1.0.12}
\end{equation*}
$$

Then by Theorem 1.1, since $u \leq 0$ on $\partial_{p} Q_{T}$ we have that $u \leq 0$ on Q_{T}. This proves (1).
To prove (2), we define $M \stackrel{\text { def }}{=} \max _{\bar{Q}_{T}}|f-g|, u \stackrel{\text { def }}{=} w-v-t M$ and note that

$$
\begin{equation*}
u_{t}-D u_{x x}=g-f-M \leq 0 \tag{1.0.13}
\end{equation*}
$$

Thus, by Theorem 1.1, we have that

$$
\begin{equation*}
\max _{\bar{Q}_{T}} u=\max _{\partial_{p} Q_{T}} u \leq \max _{\partial_{p} Q_{T}}|w-v| . \tag{1.0.14}
\end{equation*}
$$

Thus, subtracting and adding $t M$, we have

$$
\begin{equation*}
\max _{\bar{Q}_{T}} w-v \leq \max _{\bar{Q}_{T}}(w-v-t M)+\max _{\bar{Q}_{T}} t M \leq \max _{\partial_{p} Q_{T}}|w-v|+T M . \tag{1.0.15}
\end{equation*}
$$

Similarly, by setting $u \stackrel{\text { def }}{=} v-w-t M$, we can show that

$$
\begin{equation*}
\max _{\bar{Q}_{T}} v-w \leq \max _{\partial_{p} Q_{T}}|w-v|+T M . \tag{1.0.16}
\end{equation*}
$$

Combining (1.0.15) and (1.0.16), and recalling the definition of M, we have shown (2).

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

