MATH 18.152 COURSE NOTES - CLASS MEETING \# 9

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck

Class Meeting \# 9: Poisson's Formula, Harnack's Inequality, and Liouville's Theorem

1. Representation Formula for Solutions to Poisson's Equation

We now derive our main representation formula for solution's to Poisson's equation on a domain Ω.

Theorem 1.1 (Representation formula for solutions to the boundary value Poisson equation). Let Ω be a domain with a smooth boundary, and assume that $f \in C^{2}(\bar{\Omega})$ and $g \in C(\partial \Omega)$. Then the unique solution $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ to

$$
\begin{align*}
\Delta u(x) & =f(x), & & x \in \Omega \subset \mathbb{R}^{n}, \tag{1.0.1}\\
u(x) & =g(x), & & x \in \partial \Omega .
\end{align*}
$$

can be represented as

$$
\begin{equation*}
u(x)=\int_{\Omega} f(y) G(x, y) d^{n} y+\int_{\partial \Omega} g(\sigma) \underbrace{\nabla_{\hat{N}(\sigma)} G(x, \sigma)}_{\text {Poisson kernel }} d \sigma, \tag{1.0.2}
\end{equation*}
$$

where $G(x, y)$ is the Green function for Ω.
Proof. Applying the Representation formula for u Proposition, we have that

$$
\begin{equation*}
u(x)=\int_{\Omega} \Phi(x-y) f(y) d^{n} y-\int_{\partial \Omega} \Phi(x-\sigma) \nabla_{\hat{N}(\sigma)} u(\sigma) d \sigma+\int_{\partial \Omega} g(\sigma) \nabla_{\hat{N}(\sigma)} \Phi(x-\sigma) d \sigma \tag{1.0.3}
\end{equation*}
$$

Recall also that

$$
\begin{equation*}
G(x, y)=\Phi(x-y)-\phi(x, y) \tag{1.0.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{y} \phi(x, y)=0, \quad x \in \Omega \tag{1.0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, \sigma)=0 \text { when } x \in \Omega \text { and } \sigma \in \partial \Omega . \tag{1.0.6}
\end{equation*}
$$

The expression 1.0.3) is not very useful since don't know the value of $\nabla_{\hat{N}(\sigma)} u(\sigma)$ along $\partial \Omega$. To fix this, we will use Green's identity. Applying Green's identity to the functions $u(y)$ and $\phi(x, y)$, and recalling that $\Delta_{y} \phi(x, y)=0$ for each fixed $x \in \Omega$, we have that

$$
\begin{equation*}
0=\int_{\Omega} \phi(x, y) \overbrace{f(y)}^{\Delta u(y)} d^{n} y-\int_{\partial \Omega} \overbrace{\phi(x, \sigma)}^{\Phi(x-\sigma)} \nabla_{\hat{N}} u(\sigma) d \sigma+\int_{\partial \Omega} \overbrace{g(\sigma)}^{u(\sigma)} \nabla_{\hat{N}} \phi(x, \sigma) d \sigma . \tag{1.0.7}
\end{equation*}
$$

Subtracting (1.0.7) from (1.0.3), and using (1.0.4), we deduce the formula 1.0.2).

2. Poisson's Formula

Let's compute the Green function $G(x, y)$ and Poisson kernel $P(x, \sigma) \stackrel{\text { def }}{=} \nabla_{\hat{N}} G(x, \sigma)$ from 1.0.2) in the case that $\Omega \stackrel{\text { def }}{=} B_{R}(0) \subset \mathbb{R}^{3}$ is a ball of radius R centered at the origin. We'll use a technique called the method of images that works for special domains.

Warning 2.0.1. Brace yourself for a bunch of tedious computations that at the end of the day will lead to a very nice expression.

The basic idea is to hope that $\phi(x, y)$ from the decomposition $G(x, y)=\Phi(x-y)-\phi(x, y)$, where $\phi(x, y)$ is viewed as a function of x that depends on the parameter y, is equal to the Newtonian potential generated by some "imaginary charge" q placed at a point $x^{*} \in B_{R}^{c}(0)$. To ensure that $G(x, \sigma)=0$ when $\sigma \in \partial B_{R}(0), q$ and x^{*} have to be chosen so that along the boundary $\left\{y \in \mathbb{R}^{3}| | y \mid=\right.$ $R\}, \phi(x, y)=\frac{1}{4 \pi|x-y|}$. In a nutshell, we guess that

$$
\begin{equation*}
G(x, y)=-\frac{1}{4 \pi|x-y|}+\underbrace{\frac{q}{4 \pi\left|x^{*}-y\right|}}_{\phi(x, y) ?}, \tag{2.0.8}
\end{equation*}
$$

and we try to solve for q and x^{*} so that $G(x, y)$ vanishes when $|y|=R$.
Remark 2.0.1. Note that $\Delta_{y} \frac{q}{4 \pi\left|x^{*}-y\right|}=0$, which is one of the conditions necessary for constructing $G(x, y)$.

By the definition of $G(x, y)$, we must have $G(x, y)=0$ when $|y|=R$, which implies that

$$
\begin{equation*}
\frac{1}{4 \pi|x-y|}=\frac{q}{4 \pi\left|x^{*}-y\right|} \tag{2.0.9}
\end{equation*}
$$

Simple algebra then leads to

$$
\begin{equation*}
\left|x^{*}-y\right|^{2}=q^{2}|x-y|^{2} . \tag{2.0.10}
\end{equation*}
$$

When $|y|=R$, we use 2.0.10 to compute that

$$
\begin{equation*}
\left|x^{*}\right|^{2}-2 x^{*} \cdot y+R^{2}=\left|x^{*}-y\right|^{2}=q^{2}|x-y|^{2}=q^{2}\left(|x|^{2}-2 x \cdot y+R^{2}\right), \tag{2.0.11}
\end{equation*}
$$

where • denotes the Euclidean dot product. Then performing simple algebra, it follows from (2.0.11) that

$$
\begin{equation*}
\left|x^{*}\right|^{2}+R^{2}-q^{2}\left(R^{2}+|x|^{2}\right)=2 y \cdot\left(x^{*}-q^{2} x\right) \tag{2.0.12}
\end{equation*}
$$

Now since the left-hand side of 2.0 .12 does not depend on y, it must be the case that the right-hand side is always 0 . This implies that $x^{*}=q^{2} x$, and also leads to the equation

$$
\begin{equation*}
q^{4}|x|^{2}-q^{2}\left(R^{2}+|x|^{2}\right)+R^{2}=0 . \tag{2.0.13}
\end{equation*}
$$

Solving (2.0.13) for q, we finally have that

$$
\begin{align*}
q & =\frac{R}{|x|}, \tag{2.0.14}\\
x^{*} & =\frac{R^{2}}{|x|^{2}} x \tag{2.0.15}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \phi(x, y)=\frac{1}{4 \pi} \frac{R}{|x|\left|\frac{R^{2}}{|x|^{2}} x-y\right|}, \tag{2.0.16}\\
& \phi(0, y)=\frac{1}{4 \pi R}, \tag{2.0.17}
\end{align*}
$$

where we took a limit as $x \rightarrow 0$ in 2.0.16 to derive 2.0.17).
Next, using (2.0.8), we have

$$
\begin{array}{ll}
G(x, y)=-\frac{1}{4 \pi|x-y|}+\frac{1}{4 \pi} \frac{R}{|x|\left|\frac{R^{2}}{|x|^{2}} x-y\right|}, & x \neq 0 \\
G(0, y)=-\frac{1}{4 \pi|y|}+\frac{1}{4 \pi R} . \tag{2.0.19}
\end{array}
$$

For future use, we also compute that

$$
\begin{equation*}
\nabla_{y} G(x, y)=-\frac{x-y}{4 \pi|x-y|^{3}}+\frac{1}{4 \pi} \frac{R}{|x|} \frac{x^{*}-y}{\left|x^{*}-y\right|^{3}} . \tag{2.0.20}
\end{equation*}
$$

Now when $\sigma \in \partial B_{R}(0), 2.0 .10$ and (2.0.14) imply that

$$
\begin{equation*}
\left|x^{*}-\sigma\right|=\frac{R}{|x|}|x-\sigma| . \tag{2.0.21}
\end{equation*}
$$

Therefore, using (2.0.20) and (2.0.21), we compute that

$$
\begin{align*}
\nabla_{\sigma} G(x, \sigma) & =-\frac{x-\sigma}{4 \pi|x-\sigma|^{3}}+\frac{1}{4 \pi} \frac{|x|^{2}}{R^{2}} \frac{x^{*}-\sigma}{|x-\sigma|^{3}}=-\frac{x-\sigma}{4 \pi|x-\sigma|^{3}}+\frac{1}{4 \pi} \frac{|x|^{2}}{R^{2}} \frac{\frac{R^{2}}{|x|^{2}} x-\sigma}{|x-\sigma|^{3}} \tag{2.0.22}\\
& =\frac{\sigma}{4 \pi|x-\sigma|^{3}}\left(1-\frac{|x|^{2}}{R^{2}}\right)
\end{align*}
$$

Using 2.0 .22 and the fact that $\hat{N}(\sigma)=\frac{1}{R} \sigma$, we deduce

$$
\begin{equation*}
\nabla_{\hat{N}(\sigma)} G(x, \sigma) \stackrel{\text { def }}{=} \nabla_{\sigma} G(x, \sigma) \cdot \hat{N}(\sigma)=\frac{R^{2}-|x|^{2}}{4 \pi R} \frac{1}{|x-\sigma|^{3}} . \tag{2.0.23}
\end{equation*}
$$

Remark 2.0.2. If the ball were centered at the point $p \in \mathbb{R}^{3}$ instead of the origin, then the formula (2.0.23) would be replaced with

$$
\begin{equation*}
\nabla_{\hat{N}(\sigma)} G(x, \sigma) \stackrel{\text { def }}{=} \nabla_{\sigma} G(x, \sigma) \cdot \hat{N}(\sigma)=-\frac{R^{2}-|x-p|^{2}}{4 \pi R} \frac{1}{|x-\sigma|^{3}} . \tag{2.0.24}
\end{equation*}
$$

Let's summarize this by stating a lemma.
Lemma 2.0.1. The Green function for a ball $B_{R}(p) \subset \mathbb{R}^{3}$ is

$$
\begin{align*}
& G(x, y)=-\frac{1}{4 \pi|x-y|}+\frac{1}{4 \pi} \frac{R}{|x-p|\left|\frac{R^{2}}{|x-p|^{2}}(x-p)-(y-p)\right|}, \quad x \neq p \tag{2.0.25a}\\
& G(p, y)=-\frac{1}{4 \pi|y-p|}+\frac{1}{4 \pi R} . \tag{2.0.25b}
\end{align*}
$$

Furthermore, if $x \in B_{R}(p)$ and $\sigma \in \partial B_{R}(p)$, then

$$
\begin{equation*}
\nabla_{\hat{N}(\sigma)} G(x, \sigma)=\frac{R^{2}-|x-p|^{2}}{4 \pi R} \frac{1}{|x-\sigma|^{3}} . \tag{2.0.25c}
\end{equation*}
$$

We can now easily derive a representation formula for solutions to the Laplace equation on a ball.
Theorem 2.1 (Poisson's formula). Let $B_{R}(p) \subset \mathbb{R}^{3}$ be a ball of radius R centered at $p=$ $\left(p^{1}, p^{2}, p^{3}\right)$, and let $x=\left(x^{1}, x^{2}, x^{3}\right)$ denote a point in \mathbb{R}^{3}. Let $g \in C\left(\partial B_{R}(p)\right)$. Then the unique solution $u \in C^{2}\left(B_{R}(p)\right) \cap C\left(\bar{B}_{R}(p)\right)$ of the $P D E$

$$
\left\{\begin{array}{l}
\Delta u(x)=0, \quad x \in B_{R}(p), \tag{2.0.26}\\
u(x)=g(x), \quad x \in \partial B_{R}(p),
\end{array}\right.
$$

can be represented using the Poisson formula:

$$
\begin{equation*}
u(x)=\frac{R^{2}-|x-p|^{2}}{4 \pi R} \int_{\partial B_{R}(p)} \frac{g(\sigma)}{|x-\sigma|^{3}} d \sigma . \tag{2.0.27}
\end{equation*}
$$

Remark 2.0.3. In n dimensions, the formula 2.0.27) gets replaced with

$$
\begin{equation*}
u(x)=\frac{R^{2}-|x-p|^{2}}{\omega_{n} R} \int_{\partial B_{R}(p)} \frac{g(\sigma)}{|x-\sigma|^{n}} d \sigma \tag{2.0.28}
\end{equation*}
$$

where as usual, ω_{n} is the surface area of the unit ball in \mathbb{R}^{n}.
Proof. The identity (2.0.27) follows immediately from Theorem 1.1 and Lemma 2.0.1.

3. Harnack's inequality

We will now use some of our tools to prove a famous inequality for Harmonic functions. The theorem provides some estimates that place limitations on how slow/fast harmonic functions are allowed to grow.

Theorem 3.1 (Harnack's inequality). Let $B_{R}(0) \subset \mathbb{R}^{n}$ be the ball of radius R centered at the origin, and let $u \in C^{2}\left(B_{R}(0)\right) \cap C\left(\bar{B}_{R}(0)\right)$ be the unique solution to (2.0.26). Assume that u is non-negative on $\bar{B}_{R}(0)$. Then for any $x \in B_{R}(0)$, we have that

$$
\begin{equation*}
\frac{R^{n-2}(R-|x|)}{(R+|x|)^{n-1}} u(0) \leq u(x) \leq \frac{R^{n-2}(R+|x|)}{(R-|x|)^{n-1}} u(0) . \tag{3.0.29}
\end{equation*}
$$

Proof. We'll do the proof for $n=3$. The basic idea is to combine the Poisson representation formula with simple inequalities and the mean value property. By Theorem 2.1, we have that

$$
\begin{equation*}
u(x)=\frac{R^{2}-|x|^{2}}{4 \pi R} \int_{\partial B_{R}(0)} \frac{g(\sigma)}{|x-\sigma|^{3}} d \sigma . \tag{3.0.30}
\end{equation*}
$$

By the triangle inequality, for $\sigma \in \partial B_{R}(0)$ (i.e. $|\sigma|=R$), we have that $|x|-R \leq|x-\sigma| \leq|x|+R$. Applying the first inequality to (3.0.30), and using the non-negativity of g, we deduce that

$$
\begin{equation*}
u(x) \leq \frac{R+|x|}{R^{2}-|x|^{2}} \frac{1}{4 \pi R} \int_{\partial B_{R}(0)} g(\sigma) d \sigma . \tag{3.0.31}
\end{equation*}
$$

Now recall that by the mean value property, we have that

$$
\begin{equation*}
u(0)=\frac{1}{4 \pi R^{2}} \int_{\partial B_{R}(0)} g(\sigma) d \sigma \tag{3.0.32}
\end{equation*}
$$

Thus, combining (3.0.31) and (3.0.32), we have that

$$
\begin{equation*}
u(x) \leq \frac{R(R+|x|)}{(R-|x|)^{2}} u(0) \tag{3.0.33}
\end{equation*}
$$

which implies one of the inequalities in (3.0.29). The other one can be proved similarly using the remaining triangle inequality.

We now prove a famous consequence of Harnack's inequality. The statement is also often proved in introductory courses in complex analysis, and it plays a central role in some proofs of the fundamental theorem of algebra.

Corollary 3.0.2 (Liouville's theorem). Suppose that $u \in C^{2}\left(\mathbb{R}^{n}\right)$ is harmonic on \mathbb{R}^{n}. Assume that there exists a constant M such that $u(x) \geq M$ for all $x \in \mathbb{R}^{n}$, or such that $u(x) \leq M$ for all $x \in \mathbb{R}^{n}$. Then u is a constant-valued function.

Proof. We first consider the case that $u(x) \geq M$. Let $v \stackrel{\text { def }}{=} u+|M|$. Observe that $v \geq 0$ is harmonic and verifies the hypotheses of Theorem 3.1. Thus, by (3.0.29), if $x \in \mathbb{R}^{n}$ and R is sufficiently large, we have that

$$
\begin{equation*}
\frac{R^{n-2}(R-|x|)}{(R+|x|)^{n-1}} v(0) \leq v(x) \leq \frac{R^{n-2}(R+|x|)}{(R-|x|)^{n-1}} v(0) . \tag{3.0.34}
\end{equation*}
$$

Allowing $R \rightarrow \infty$ in (3.0.34), we conclude that $v(x)=v(0)$. Thus, v is a constant-valued function (and therefore u is too).

To handle the case $u(x) \leq M$, we simply consider the function $w(x) \stackrel{\text { def }}{=}-u(x)+|M|$ in place of $v(x)$, and we argue as above.

MIT OpenCourseWare
http://ocw.mit.edu

18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

