
MATH 18.152 COURSE NOTES - CLASS MEETING # 9

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 9: Poisson’s Formula, Harnack’s Inequality, and Liouville’s
Theorem

1. Representation Formula for Solutions to Poisson’s Equation

We now derive our main representation formula for solution’s to Poisson’s equation on a domain
Ω.

Theorem 1.1 (Representation formula for solutions to the boundary value Poisson
equation). Let Ω be a domain
Then the unique solution u ∈

with a smo
(

oth boundary, and assume that f C2 Ω and g C Ω .
C2(Ω) ∩

∂
C Ω to

∈ ( ) ∈ ( )

(1.0.1) ∆u x f x ,

)

x Ω Rn,

u x g x , x ∂Ω.

can be represented as

( ) = ( ) ∈ ⊂

( ) = ( ) ∈

(1.0.2) u(x) = ∫ f(y)G(x, y
Ω

)dny + ∫ g
∂Ω
(σ) ∇N̂(σ)G(x,σ

Poisson kernel

) dσ,

where G(x, y) is the Green function for Ω.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Proof. Applying the Representation formula for u Proposition, we have that

(1.0.3) u(x) = ∫ Φ(x − y)f(y)dny − ∫ Φ(x − σ)∇N̂(σ)u(σ dσ
Ω Ω

) + ∫ g σ N̂ σ Φ x σ dσ.
∂ ∂Ω

Recall also that

( )∇
( )
( − )

(1.0.4) G(x, y) = Φ(x − y) − φ(x, y),

where

(1.0.5) ∆yφ(x, y

and

) = 0, x ∈ Ω,

(1.0.6) G x,σ 0 when x Ω and σ ∂Ω.

The expression (1.0.3) is not very useful since don’t know the value of N̂ σ u σ along ∂Ω. To

fix this, we will use Green’s identit

(

y. Applying

) =

Green’s

∈

identit

∈

y to the functions

∇
( )
(

u

)

(y) and φ(x, y),
and recalling that ∆yφ x, y 0 for each fixed x Ω, we have that

1

( ) = ∈
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¬
∆u(y) Φ(x σ

0

−σ) u

(1.0.7) = ∫ φ(x, y f

(

(y

)

) ) dny −
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ

∫ φ(x,σ)∇N̂u(σ)dσ +
¬

∫ g(σ)∇N̂φ(x,σ)dσ.
Ω ∂Ω ∂Ω

Subtracting (1.0.7) from (1.0.3), and using (1.0.4), we deduce the formula (1.0.2).
�

2.

(

Poisson’s

)

Formula
def

Let’s compute the Green func

⊂

tion G x, y and Poisson kernel (

= ( )

P x,σ) = ∇N̂G(x,σ from (1.0.2)
def

in the case that Ω BR 0 R3 is a ball of radius R centered at the origin. We’ll use
that

)

a technique
called the method of images works for special domains.

Warning 2.0.1. Brace yourself for a bunch of tedious computations that at the end of the day will
lead to a very nice expression.

The basic idea is to hope that φ x, y from the decomposition G x, y Φ x y φ x, y , where
φ x, y is viewed as a function of x that depends on the parameter y, is equal to
potential generated by some

( ) ( ) = ( − )− ( )

( )

∈ ( )

the Newtonian

G(x,σ) = 0
R , φ x, y

∈ ( )

“imaginary charge” q placed at a point x∗ Bc
R 0 . To

{

ensure
∈ ∣

that
∣ ∣ =

(2.0.8)

} ( ) =

when σ ∂BR 0 , q and x∗ have to be chosen so that along the boundary y R3 y
1

4π∣x−y∣ . In a nutshell, we guess that

G(x, y) = −
1

4π∣x − y∣
+

q

´
4
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
π x y

φ x,y

to

∣
¸

∗

(

−
¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹
)?

and we try solve for q and x so that G x, y vanishes when

¶
∣
,

∗ y R.

Remark 2.0.1. Note that ∆ q

(

y 4π x y 0, which is one of the conditions necessary for constructing

G x, y).

( ∣ ∣ =

∣ ∗

)

− ∣

By the definition of G

=

(2.0.9)

(x, y), we must have G(x, y) = 0 when ∣y∣ = R, which implies that

1

4π∣x − y
=

q

4π∣x

Simple algebra then leads to

∣ ∗ − ∣
.

y

(2.0.10) x

,

∗ y 2 q2 x y 2.

When ∣y∣ = R we

∣

use

∣ −

(2.0.10) to compute

∣ −

that

∣ = ∣ − ∣

(2.0.11) x∗ 2 2x∗ ⋅ y +R2 = ∣x∗ − y x

the

∣2 = q2∣ − y∣2 = q2

where denotes Euclidean dot product. Then performing simple
that

(∣ 2

algeb

)

⋅

x∣2 − 2x ⋅ y +R ,

ra, it follows from (2.0.11)

(2.0.12)

Now since the left-hand

∣x∗∣2 +R2

side of (2.0.12)

− q2(R2 + ∣x 2 2y x q2x .

does
∗

not
right-hand side is always 0. This implies that x

∣

q2

)

x,

=

depend

⋅ ( ∗

on

−

y,

)

it must be the case that the
and also leads to the equation=
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(2.0.13) q4 x 2 q2 R2 x 2 R2 0.

Solving (2.0.13) for q, we finally have

∣

that

∣ − ( + ∣ ∣ ) + =

R
(2.0.14) q =

∣x∣
,

x∗ =
∣

R2

(2.0.15)
x∣
x.

2

Therefore,

(2.0.16) φ(x, y

(2.0.17) φ 0, y

) =
1 R

∣

2 ,
4π x R

x∣2x y

1
,

4πR

∣ ∣∣ − ∣

where we took a limit as x in

) =

→ 0 (2.0.16)

(

to derive (2.0.17).
Next, using (2.0.8), we have

(2.0.18) G(x, y) = −
∣

1

4π x − y∣
+

1 R

4π ∣x∣∣
, x 0,

∣

R

1
(2.0.19) G

∣

2

x 2x − y

1
0, y .

∣
≠

4π y 4πR

For future use, we

(

also

)

compute

= −
∣ ∣

that

+

(2.0.20) ∇yG(x, y) = −
x − y

4π∣x −

1 R x y
.

∈ ( )

y 3 4π x x

∗

y 3

Now when σ ∂BR 0 , (2.0.10) and (2.0.14) imply

∣
+

that

−

∣ ∣ ∣ ∗ − ∣

(2.0.21) ∣x∗ − σ∣ =
∣

R

∣
∣x − σ∣.

x

Therefore, using (2.0.20) and (2.0.21), we compute that

∇ ( ) = −
x −

R2

∣ −

σ

∣

1 x 2 x σ x σ 1 x 2
x 2x σ

(2.0.22) σG x,σ
4π x σ 3 x 4 x

σ

+
4π

∣

R2

∗

σ 3 π σ

x 2

∣ −
= −

− ∣ ∣ −

1 .
4π x σ 3 R2

∣ − ∣ ∣ − ∣3
+

4π R2

∣

∣x

∣

− σ∣3

Using (2.0.22) and the fact

=

that

∣

N

−

ˆ σ

∣
( −

( ) = 1

∣ ∣

Rσ, w

)

e deduce

2
def R x 2 1ˆ(2.0.23) N̂ σ G x,σ σG x,σ N σ

4π

−

R

∣ ∣
.

x σ 3
∇

( )
( ) = ∇ ( ) ⋅ ( ) =

∣ − ∣
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Remark 2.0.2. If the ball were centered at the point p R3 instead of the origin, then the formula
(2.0.23) would be replaced with

∈

∇
R2 2

N̂(σ)
def x p 1ˆ(2.0.24) G x,σ σG x,σ N σ .

4πR x σ 3

Let’s summarize this by stating

( )

a

=

lemma.

∇ ( ) ⋅ ( ) = −
− ∣ − ∣

∣ − ∣

Lemma 2.0.1. The Green function for a ball B 3
R p R is

( ) = −
∣

1

− ∣
+

1

( ) ⊂

R
(2.0.25a) G x, y

4π x y 4π ∣x − p∣∣
∣

R2 , x p,
x−p

1 1
G

∣2
p

(2.0.25b)

) − (y − p

y π

(x

p, y .
4π p 4 R

− )∣
≠

Furthermore, if x

( ) = −
∣ − ∣

+

∈ BR(p) and σ ∈ ∂BR(p), then

∇ ( ) =
R2 − ∣x p

(2.0.25c) N̂(σ)G x,σ
− 2 1

4πR x σ

We can now easily derive a representation formula for solutions

∣

∣ − ∣
.

3

to the Laplace equation on a ball.

Theorem 2.1 (Poisson’s formula). Let BR(p) ⊂

( ) = ( )

R3 be a bal
∈

l of
(

radius
( ))

R centered at p
p1, p2, p3 ,

∈

and
(

let
(

x
)) ∩

x1

(

, x2,
(

x3

))

denote a point in R3. Let g C ∂BR p . Then the unique
solution u C2 BR p C BR p of the PDE

=

{
∆u(x) =
( ) = (

0,
)

x
(2.0.26) R p

x
∈ B ,

u g x , x ∈ ∂BR

c

(

(p
)

),

an be represented using the Poisson formula:

( ) =
R2 − ∣x − p 2

(2.0.27) u x
4πR

∣
∫
∂BR(p

Remark 2.0.3. In n dimensions, the formula (2.0.27) gets

)

( )

∣

g

−

σ

∣
dσ.

x σ 3

replaced with

R2 x p 2 g σ
(2.0.28) u(x) =

−

ω

∣

nR

− ∣
∫
∂BR(

dσ,
np

where

) x

(

− σ

as usual, ω

)

n is the surface area of the unit ball in R
∣

n.

∣

Proof. The identity (2.0.27) follows immediately from Theorem 1.1 and Lemma 2.0.1. �

3. Harnack’s inequality

We will now use some of our tools to prove a famous inequality for Harmonic functions. The
theorem provides some estimates that place limitations on how slow/fast harmonic functions are
allowed to grow.
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Theorem 3.1 (Harnac
∈ (

k’s
( ))

ineq
∩

ualit
(

y
(

).
))

Let BR 0 Rn be the ball of radius R centered at the
origin, and let u C2

(

B
)

R 0 C BR 0
∈

be the
(

unique
non-negative on BR 0 . Then for any x BR 0 , we

) ⊂

R

( )

solution to (2.0.26). Assume that u is
have that

n

(3.0.29)
R

−2(R − ∣x∣) R
0

+ ∣x
−

u( ) ≤ u(x) ≤
Rn−2(

−

∣)
u 0 .

x n 1 R x n 1

Proof. We’ll do the proof for n 3. The basic idea is to combine the P

(

oisson

)

representation formula
with simple inequalities and

(

the

+ ∣ ∣)

=

mean value property.

(

By

−

Theorem

∣ ∣)

2.1, we have that

( ) =
R2 − ∣x 2

u x
4πR

∣
∫

g σ
(3.0.30)

∂BR(0) ∣
dσ.

∈ ( ) ∣ ∣ =

x

R

(

σ

By the triangle inequality, for σ ∂BR 0

∣3

(i.e. σ ),

)

−

we have that ∣x R x σ x R.
Applying the first inequality to (3.0.30), and using the non-negativity of

∣ −

g, w
≤

e
∣

deduce
− ∣ ≤

that
∣ ∣ +

u(x) ≤
R

(3.0.31)
R2

+ ∣x 1

x

∣

− ∣ ∣2 4πR ∫
g σ dσ.

∂BR(0

Now recall that by the mean value property, we have that

)

( )

(3.0.32) u( ) =
1

0 g σ dσ.
4πR2 ∂BR

Thus, combining (3.0.31) and (3.0.32), we have

∫

that

(0)
( )

u(x) ≤
R(R + ∣ ∣)

( − ∣ ∣)

x
(3.0.33) u(0),

R x 2

which implies one of the inequalities in (3.0.29). The other one can be proved similarly using the
remaining triangle inequality.

�

We now prove a famous consequence of Harnack’s inequality. The statement is also often proved
in introductory courses in complex analysis, and it plays a central role in some proofs of the
fundamental theorem of algebra.

Corollary 3.0.2 (Liouville’s theorem). Suppose that u C2 Rn is harmonic on Rn. Assume
that
∈

there exists a constant M such that u(x) ≥ M for all
∈

x R
(
n,
)

∈ or such that u x M for all
x Rn. Then u is a constant-valued function.

def
Proof. We first consider the case that u x M. Let v u M . Observe that v

(

0

) ≤

is harmonic
and verifies the hypotheses of Theorem 3.1. Thus, by (3.0.29), if x Rn and R is sufficiently large,
we have that

( ) ≥ = + ∣ ∣ ≥

∈

Rn−2(R − ∣

( + ∣ ∣)

x R
−

∣)
v(0) ≤

n 2 R
(3.0.34) v

Allo

(x
R x n 1

)
R

−

x

wing R in (3.0.34), we conclude that v x

≤
( + ∣ ∣)

o).

(

v

−

0

∣

. Th
(and therefore u is to

∣)

x
v(0 .

n−1

→∞ ( ) = ( ) us, v is

)

a constant-valued function
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To handle the case u(x) ≤
def

M, we simply consider the function w
v

(x) = −u(x) + ∣M ∣ in place of
x , and we argue as above.

�
( )
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