# MATH 18.152 COURSE NOTES - CLASS MEETING \# 11 

18.152 Introduction to PDEs, Fall 2011

Professor: Jared Speck
Class Meeting \# 11: The Method of Spherical Means

## 1. $1+3$ SPACETIME DIMENSIONS AND THE METHOD OF SPHERICAL MEANS

We would now like to derive an analog of d'Alembert's formula in the physically relevant case of $1+3$ dimensions. As we will see, the analogous formula, known as Kirchhoff's formula, can be derived through the following steps.

- Given a solution $u(t, x)$ to the $1+3$ dimensional wave equation, we will define a spherical average of $u$ centered at $x$. The average will depend on the averaging radius $r$.
- For fixed $x$, we will show that a slight modification of the average will solve the $1+1$ dimensional wave equation in the unknowns $(t, r)$. With the help of our corollary to d'Alembert's formula, we will be able to find an explicit formula for this modified function.
- We will take a limit as the averaging goes to 0 in order to recover an expression for $u(t, x)$.

This procedure is known as the method of spherical means. The final result will be stated and proved as a theorem. Before proving the theorem, we will develop some preliminary estimates. We will use spherical coordinates $(r, \theta, \phi) \in[0, \infty) \times[0, \pi) \times[0,2 \pi)$ on $\mathbb{R}^{3}$. Recall that if the spherical coordinates are centered at the Cartesian point $\left(p^{1}, p^{2}, p^{3}\right)$, then the standard Cartesian coordinates ( $x^{1}, x^{2}, x^{3}$ ) are connected to spherical coordinates by

$$
\begin{align*}
& x^{1}=p^{1}+r \sin \theta \cos \phi,  \tag{1.0.1a}\\
& x^{2}=p^{2}+r \sin \theta \sin \phi,  \tag{1.0.1b}\\
& x^{3}=p^{3}+r \cos \theta . \tag{1.0.1c}
\end{align*}
$$

Also recall that the integration measure associated to $B_{r}(0)$ is $d \sigma=r^{2} d \omega$, where $d \omega \stackrel{\text { def }}{=} \sin \theta d \theta d \phi$. Here, $\omega$ represents the angular variables. We will abuse notation by using the symbol $\omega$ to denote both the angular coordinates $(\theta, \phi)$, and alternatively as the corresponding point $(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \in$ $\partial B_{1}(0)$.

Proposition 1.0.1 (Spherical averages). Let $u(t, x) \in C^{2}\left([0, \infty) \times \mathbb{R}^{3}\right)$ be a solution to the $1+3$ dimensional global Cauchy problem

$$
\begin{array}{rlrl}
-\partial_{t}^{2} u(t, x)+\Delta u(t, x) & =0, & (t, x) & \in[0, \infty) \times \mathbb{R}^{3}, \\
u(0, x) & =f(x), & x \in \mathbb{R}^{3}, \\
\partial_{t} u(0, x) & =g(x), & x \in \mathbb{R}^{3} .  \tag{1.0.2c}\\
& 1 & &
\end{array}
$$

For each $r>0$, define the spherically averaged quantities

$$
\begin{align*}
U(t, r ; x) & \stackrel{\text { def }}{=} \frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} u(t, \sigma) d \sigma=\frac{1}{4 \pi} \int_{\omega \in \partial B_{1}(0)} u(t, x+r \omega) d \omega  \tag{1.0.3a}\\
F(r ; x) & \stackrel{\text { def }}{=} \frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} f(\sigma) d \sigma  \tag{1.0.3b}\\
G(r ; x) & \stackrel{\text { def }}{=} \frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} g(\sigma) d \sigma \tag{1.0.3c}
\end{align*}
$$

and their related modifications

$$
\begin{array}{r}
\widetilde{U}(t, r ; x) \stackrel{\text { def }}{=} r U(t, r ; x), \\
\widetilde{F}(r ; x) \stackrel{\text { def }}{=} r F(r ; x), \\
\widetilde{G}(r ; x) \stackrel{\text { def }}{=} r G(r ; x) . \tag{1.0.4c}
\end{array}
$$

Then $\widetilde{U}(t, r ; x) \in C^{2}([0, \infty) \times[0, \infty))$ is a solution to the following initial + boundary-value problem for the one-dimensional wave equation:

$$
\begin{align*}
-\partial_{t}^{2} \widetilde{U}(t, r ; x)+\partial_{r}^{2} \widetilde{U}(t, r ; x) & =0, & (t, r) \in[0, \infty) \times[0, \infty),  \tag{1.0.5a}\\
\widetilde{U}(t, 0 ; x) & =0, & t \in[0, \infty),  \tag{1.0.5b}\\
\widetilde{U}(0, r ; x) & =\widetilde{F}(r ; x), & r \in(0, \infty),  \tag{1.0.5c}\\
\partial_{t} \widetilde{U}(0, r ; x) & =\widetilde{G}(r ; x), & r \in(0, \infty) . \tag{1.0.5d}
\end{align*}
$$

Furthermore,

$$
\begin{equation*}
\lim _{r \rightarrow 0} U(t, r ; x)=u(t, x) . \tag{1.0.6}
\end{equation*}
$$

Proof. Differentiating under the integral on the right-hand side of 1.0.3a, using the chain rule relation $\partial_{r}[u(t, x+r \omega)] d \omega=(\nabla u)(t, x+r \omega) \cdot \omega d \omega=\frac{1}{r^{2}} \nabla_{\hat{N}(\sigma)} u(t, \sigma) d \sigma$ (where $\hat{N}(\sigma)$ is the outward unit normal to $\left.\partial B_{r}(x)\right)$, and applying the divergence theorem, we compute that

$$
\begin{equation*}
\partial_{r} U=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} \nabla_{\hat{N}(\sigma)} u(t, \sigma) d \sigma=\frac{1}{4 \pi r^{2}} \int_{B_{r}(x)} \Delta_{y} u(t, y) d^{3} y \tag{1.0.7}
\end{equation*}
$$

We now derive a version of the fundamental theorem of calculus that will be used in our analysis below. If $h$ is a continuous function on $\mathbb{R}^{3}$, then using spherical coordinates $(\rho, \omega)$ centered at the fixed point $x$, we have
$\partial_{r} \int_{B_{r}(x)} h(y) d^{3} y=\partial_{r} \int_{0}^{r} \int_{\omega \in \partial B_{1}(0)} \rho^{2} h(\rho, x+\rho \omega) d \omega d \rho=\int_{\omega \in \partial B_{1}(0)} r^{2} h(r, x+r \omega) d \omega \stackrel{\text { def }}{=} \int_{\partial B_{r}(x)} h(\sigma) d \sigma$.
Multiplying both sides of (1.0.7) by $r^{2}$ and applying (1.0.8), we have that

$$
\begin{equation*}
\partial_{r}\left(r^{2} \partial_{r} U\right)=\frac{1}{4 \pi} \partial_{r} \int_{B_{r}(x)} \Delta_{y} u(t, y) d^{3} y=\frac{1}{4 \pi} \int_{\partial B_{r}(x)} \Delta u(t, \sigma) d \sigma . \tag{1.0.9}
\end{equation*}
$$

Differentiating under the integral in (1.0.3a) and using (1.0.2a), we have that

$$
\begin{equation*}
\partial_{t}^{2} U(t, r ; x)=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} \partial_{t}^{2} u(t, \sigma) d \sigma=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} \Delta u(t, \sigma) d \sigma \tag{1.0.10}
\end{equation*}
$$

Comparing 1.0.9) and 1.0.10, we see that

$$
\begin{equation*}
\partial_{t}^{2} U(t, r ; x)=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} U\right)=\partial_{r}^{2} U(t, r ; x)+\frac{2}{r} \partial_{r} U(t, r ; x) . \tag{1.0.11}
\end{equation*}
$$

Multiplying both sides of 1.0 .11 by $r$ and performing simple calculations, we see that

$$
\begin{equation*}
\partial_{t}^{2}[r U(t, r ; x)]=\partial_{r}^{2}[r U(t, r ; x)] . \tag{1.0.12}
\end{equation*}
$$

We have thus shown that the PDE (1.0.5a) is verified by $\widetilde{U} \stackrel{\text { def }}{=} r U$.
Using (1.0.2b) - 1.0.2c) and definitions (1.0.3b-1.0.3c), it is easy to check that the initial conditions (1.0.5c) - (1.0.5d) hold. Note that you will have to differentiate under the integral in (1.0.3a) in order to show that (1.0.5d) holds.

The limit 1.0.6 follows easily from the right-hand side of 1.0.3a, since $u$ is continuous.
Finally, the boundary condition 1.0 .5 b then follows easily from multiplying 1.0 .6 by $r$ before taking the limit $r \rightarrow 0^{+}$.

Corollary 1.0.2 (Representation formula for $\widetilde{U}(t, r ; x))$. Under the assumptions of Proposition 1.0.1, for $0 \leq r \leq t$, we have that

$$
\begin{equation*}
\widetilde{U}(t, r ; x) \stackrel{\text { def }}{=} r U(t, r ; x)=\frac{1}{2}(\widetilde{F}(r+t ; x)-\widetilde{F}(r-t ; x))+\frac{1}{2} \int_{\rho=-r+t}^{\rho=r+t} \widetilde{G}(\rho ; x) d \rho . \tag{1.0.13}
\end{equation*}
$$

Proof. 1.0.13 follows from 1.0.5a - 1.0.5d and the Corollary to d'Alembert's formula.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.152 Introduction to Partial Differential Equations.

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

