
MATH 18.152 COURSE NOTES - CLASS MEETING # 16

18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 16: The Fourier Transform on Rn

1. Introduction to the Fourier Transform

Earlier in the course, we learned that periodic functions f ∈ L2([−1, 1]) (of period 2) can be
represented using a Fourier series:

a0
∞ ∞

(1.0.1) f(x)“ = ” +
∑

am cos(mπx) +
∑

bm sin(mπx).
2

m=1 m=1

The “ = ” sign above is interpreted in the sense of the convergence of the sequence of partial sums
associated to the right-hand side in the L2([−1, 1]) norm. The coefficients am and bm represent the
“amount of the frequency m” that the function f contains. These coefficients were related to f
itself by

a0 =

∫ 1

(1.0.2a) f(x) dx,

(1.0.2b)

∫−11
am = f(x) cos(mπx) dx, (m ≥ 1),

−1

bm =

∫ 1

(1.0.2c) f(x) sin(mπx) dx, (m ≥ 1).
−1

The Fourier transform is a “continuous” version of the formula (1.0.1) for functions defined on
the whole space Rn. Our goal is to write functions f defined on Rn as a superposition of different
frequencies. However, instead of discrete frequencies m, we will need to use “continuous frequencies”
ξ.

Definition 1.0.1 (Fourier Transform). Let f ∈ L1(Rn), i.e.,
∫

n |f(x)R | dnx < ∞. The Fourier
ˆtransform of f is denoted by f, and it is a new function of the frequency variable ξ ∈ Rn. It is

defined for each frequency ξ as follows:

ˆ def
(1.0.3) f(ξ) =

∫
f(x)e−2πiξ·x dnx,

Rn

where · denotes the Euclidean dot product, i.e., if x = (x1∑ ,
def

· · · , xn) and ξ = (ξ1,
n j j

· · · , ξn), then

ξ ·x = j=1 ξ x . In the above formula, recall that if is r is a real number, then eir = sin r+ i cos r.

The formula (1.0.3) is analogous to the formulas (1.0.2a) - (1.0.2c). It provides the “amount of
the frequency component” ξ that f contains. Later in the course, we will derive an analog of the
representation formula (1.0.1).
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Remark 1.0.1. The Fourier transform can be defined on a much larger class of functions than
those that belong to L1. However, to make rigorous sense of this fact requires advanced techniques
that go beyond this course.

We will also use the following notation.

Definition 1.0.2 (Inverse Fourier transform). Given a function f(ξ) ∈ L1(Rn), its inverse
Fourier transform, which is denoted by f∨, is a new function of x defined as follows:

∨ def ˆ − def
(1.0.4) f (x) = f( x) =

∫
f(x)e2πiξ·x dnξ.

Rn

ˆThe name is motivated as follows: later in the course, we will show that (f)∨ = f. Thus, ∨ is in
fact the inverse of the operator ∧.

The Fourier transform is very useful in the study of certain PDEs. To use it in the context
of PDEs, we will have to understand how the Fourier transform operator interacts with partial
derivatives. In order to do this, it is convenient to introduce the following notation, which will si-
multaneously help us bookkeep when taking repeated derivatives, and when classifying the structure
monomials.

Definition 1.0.3. If

def
(1.0.5) α~ = (α1, · · · , αn)

is an array of non-negative integers, then we define ∂α~ to be the differential operator

def 1

∂α~ = ∂α1 · · · ∂α
n

(1.0.6) n .

def
Note that ∂ 1 n

α~ is an operator of order |α~ | = α + + α .
If x = (x1, · · · , xn) is an element of Cn

· · ·
, then we also define xα~ to be the monomial

xα~
def 1 n

(1.0.7) = (x1)α · · · (xn)α .

The following function spaces will play an important role in our study of the Fourier transform.
Throughout this discussion, the functions f are allowed to be complex-valued.

Definition 1.0.4 (Some important function spaces).

Ck def
(1.0.8) = {f : Rn → C | ∂α~f is continuous for |α~ | ≤ k},

def
(1.0.9) C = {f : Rn

0 → C | f is continuous and lim f(x) = 0}.
|x|→∞

We also recall the following norm on the space of bounded, continuous functions f : Rn → C :

‖f‖ def
(1.0.10) C0 = max

x∈Rn
|f(x)|.

The L2 ˆnorm plays an important role in Fourier analysis. Since f is in general complex-valued
we also need to extend the notion of the L2 inner product to complex-valued functions. This is
accomplished in the next definition.
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Definition 1.0.5 (Inner product for complex-valued functions). Let f and g be complex-
valued functions defined on Rn. We define their complex inner product by

〈f, g〉 def
(1.0.11) =

∫
f(x)ḡ(x) dnx,

Rn

where ḡ denotes the complex conjugate of g. That is, if g(x) = u(x) + iv(x), where u and v are
def

real-valued, then ḡ(x) = u(x)− iv(x).
We also define norm of f by

1/2

‖ ‖ def
= 〈 def

(1.0.12) f f, f〉1/2 =
(∫

|f(x)
Rn

|2 dnx .

Note that this is just the standard L2 norm extended to complex-v

)
alued functions.

Note that 〈·, ·〉 and ‖·‖ verify all of the standard properties associated to a complex inner product
and its norm:

• ‖f‖ ≥ 0 and ‖f‖ = 0 if and only if f = 0 almost everywhere

• 〈g, f〉 = 〈f, g〉 (Hermitian symmetry)
• If a and b are complex numbers, then 〈af + bg, h〉 = a〈f, h〉 + b〈g, h〉, and 〈f, ag〉 = ā〈f, g〉

(Hermitian linearity)
• |〈f, g〉| ≤ ‖f‖‖g‖ (Cauchy-Schwarz inequality)
• ‖f + g‖ ≤ ‖f‖+ ‖g‖ (Triangle Inequality)

2. Properties of the Fourier Transform

ˆThe next lemma illustrates some basic properties of f that hold whenever f ∈ L1.

ˆ ∈ 1 ∈ ˆLemma 2.0.1 (Properties of f for f L ). Suppose that f L1(Rn). Then f is a bounded,
continuous function and

‖ ˆ(2.0.13) f‖C0 ≤ ‖f‖L1 .

Proof. Since |eir| = 1 for all real numbers r, it follows that for each fixed ξ, we have

| ˆ(2.0.14) f(ξ)| ≤
∫
| def
f(x)e−2πiξ·x| dnx ≤

∫
|f(x)

Rn
| dnx =

n

‖f‖L1 .
R

Taking the max over all ξ ∈ Rn, the estimate (2.0.13) thus follows.
ˆWe now prove that f is continuous. Given ε > 0, let BR be a ball of radius R centered at the

origin such that the integral of |f | over its complement Bc
R is no larger than ε :

(2.0.15)

∫
BcR

|f(x)| dnx ≤ ε.

It is possible to choose such a ball since f L1. We then estimate∈
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∫ ≤2

(2.0.16) | ˆ )− ˆf(ξ f(η)| ≤ |f(x)||e−2πiξ·x − e−2πiη·x| dnx+

∫
|f(x)|

︷
|e−2πiξ·x

︸︸
− e−2πiη·x

︷
| dnx

≤
∫B c

R BR

f(x) e−2πiξ·x e−2πiη·x dnx+ 2ε.
BR

| || − |

Now since e−2πir is a uniformly continuous function of the real number r on any compact set, if
|ξ − η| is sufficiently small, then we can ensure that max |e−2πiξ·x − e−2πiη·xx∈BR | ≤ ε. We then
conclude that the final integral over BR on the right-hand side of (2.0.16) will be no larger than

(2.0.17) max |e−2πiξ·x − e−2πiη·x|
∫
| def
f(x) dnx ε f(x) dnx = ε f L1 .

x∈BR B RnR

| ≤
∫
| | ‖ ‖

ˆ ˆThus, in total, we have shown that if |ξ − η| is sufficiently small, then |f(ξ)− f(η)| ≤ ε‖f‖L1 + 2ε.
ˆSince such an estimate holds for all ε > 0, f is continuous by definition. �

It is helpful to introduce notation to indicate that a function has been translated.

Definition 2.0.6 (Translation of a function). If Rn → C is a function and y ∈ Rn is any point,
then we define the translated function τyf by

def
(2.0.18) τyf(x) = f(x− y).

The next theorem collects together some very important properties of the Fourier transform. In
particular, it illustrates how the Fourier transform interacts with translations, derivatives, multi-
plication by polynomials, products, convolutions, and complex conjugates.

Theorem 2.1 (Important properties of the Fourier transform). Assume that f, g ∈ L1(Rn),
and let t ∈ R. Then

(2.0.19a)

ˆ(τ − π
yf)∧(ξ) = e 2 iξ·yf(ξ),

(2.0.19b)

ˆ ˆ def
h(ξ) = τ 2πiη x

ηf(ξ) if h(x) = e · f(x),

(2.0.19c)

ˆ n ˆ def
h(ξ) = t f(tξ) if h(x) = f(t−1x),

(2.0.19d)
ˆ(f ∗ g)∧(ξ) = f(ξ)ĝ(ξ),

(2.0.19e)

If xα~ ˆf ∈ L1for |α~ | ≤ k, then f ∈ Ck ˆand ∂α~f(ξ) = [(−2πix)α~f(x)]∧(ξ),

(2.0.19f)
ˆIf f ∈ Ck, ∂α~f ∈ L1 for |α~ | ≤ k, and ∂α~f ∈ C0 for |α~ | ≤ k − 1, then (∂ = (2 α~

α~f)∧(ξ) πiξ) f(ξ),

(2.0.19g)
¯̂ ¯ ¯f(ξ) = (f)∨(ξ) and (f∨)(ξ) = (f)∧(ξ).
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¯Above, f denotes the complex conjugate of f ; i.e., if f = u + iv, where u and v are real-valued,
¯then f = u− iv.

Proof. To prove (2.0.19a), we make the change of variables z = x− y, dnz = dnx and calculate that

(2.0.20)

(τy )∧
def def ˆf (ξ) =

∫
f(x− y)e−2πix·ξ dnx = f(z)e−2πi(z+y)·ξ dnz = e−2πiy·ξ f(z)e−2πiz·ξ dnz = e−2πiy·ξf(ξ).

Rn Rn Rn

To prove (2.0.19b), we calculate that

∫ ∫

ˆ def
(2.0.21) h(ξ) =

∫
e2πiη·xf(x)e−2πix·ξ dnx =

∫
f(x)e−2πix·(ξ−η) dn

def ˆx = f(ξ − def ˆη) = τηf(ξ).
Rn Rn

To prove (2.0.19c), we make the change of variables y = t−1x, dny = t−ndnx to deduce that

ˆ def
(2.0.22) h(ξ) =

∫
f(t−1x)e−2πix·ξ dnx∫ Rn

f(y)e−2πiy·tξ tndny
Rn

def
= tnf̂(tξ).

To prove (2.0.19d), we use the definition of convolution, (2.0.19a), and Fubini’s theorem to deduce
that

(2.0.23)

def
(f ∗ g)∧(ξ) =

∫
e−2πx·ξ

(∫
f(x− y)g(y)dny

)
dnx =

∫
g(y)

(∫
e−2πx·ξf(x n d

n Rn Rn
− y)d x

R

)
ny︸ Rn ︷︷∫ ˆe−2πiξ·yf(ξ)

ˆ= f(ξ) e−2πiξ·yg(y) dn
def ˆy = f(ξ)ĝ(

︸
ξ).

Rn

ˆTo prove (2.0.19e), we differentiate under the integral in the definition of f(ξ) to deduce that

(2.0.24)

(ξ) ˆ
∫

(ξ)
∂α~ f(ξ) = f(x)∂α~ e−2πix·ξ dnx =

∫
def

f(x)(−2πix)α~e−2πix·ξ dnx = [(−2πix)α~f(x)]∧(ξ).
Rn Rn

To prove (2.0.19f), we integrate by parts |α~ | times and use the hypotheses on f to discard the
boundary terms at infinity, thus concluding that

(2.0.25) (∂ )∧
def

f (ξ) =

∫
∂ 2πix ξ n α~ (x) 2πix ξ n

α~ α~f(x)e− · d x =

∫
f(x)(−1)| |∂α~ e− · d x

Rn Rn

=

∫
def ˆf(x)(2πiξ)α~e−2πix·ξ dnx = (2πiξ)α~f(ξ).

Rn

To deduce the first relation in (2.0.19g), we compute that



6 MATH 18.152 COURSE NOTES - CLASS MEETING # 16

(2.0.26)

¯̂ def
f(ξ) =

∫
¯ ¯ def ˆ̄ def ¯f(x)e−2πix·ξ dnx =

∫
f(x)e−2πix·ξ dnx =

∫
f(x)e2πix·ξ dnx = f(−ξ) = (f)∨(ξ).

Rn Rn Rn

The second relation in (2.0.19g) can be shown using similar reasoning.
�

ˆ(2.0.19e) roughly shows that if f decays very rapidly at infinity, then f is very differentiable.
Similarly, (2.0.19f) roughly shows that if f is very differentiable with rapidly decaying derivatives,

ˆthen f also rapidly decays. The Fourier transform thus connects the decay properties of f to
ˆthe differentiability properties of f, and vice versa. In the next proposition, we provide a specific

example of these phenomena. More precisely, the next proposition shows that the Fourier transform
of a smooth, compactly supported function is itself smooth and rapidly decaying at infinity.

ˆProposition 2.0.2. Let f ∈ Cc∞(Rn), i.e., f is a smooth, compactly supported function. Then f
is smooth and “rapidly decaying at infinity” in the following sense: for each N ≥ 0, there exists a
constant CN > 0 such that

| ˆ(2.0.27) f(ξ)| ≤ CN(1 + |ξ|)−N .

Furthermore, an estimate similar to (2.0.27) holds (with possibly different constants) for all of the

derivatives | ˆ∂~βf(ξ)|.
ˆIn particular, f ∈ L1 :

ˆ(2.0.28) ‖f(ξ ‖ def ˆ) n
L1 =

∫
Rn
|f(ξ)| d ξ <∞,

ˆ ~and similarly for ∂~βf, where β is any derivative multi-index.

Proof. Using (2.0.19e) and the fact that f is compactly supported (and hence xα~f L1), we see
ˆ

∈
that f is smooth.

To prove (2.0.27), we use (2.0.19f), (2.0.13), and the fact that ‖∂α~f‖L1 < ∞ for any differential
operator ∂α~ to deduce that

(2.0.29) |(2πiξ)α~ f̂(ξ)| = |(∂α~f)∧(ξ)| ≤ ‖∂α~f‖L1 = Cα~ ,

where Cα~ is a constant depending on α~. In particular, if M (≥ 0 is an integer, then by apply-

def ∑n ∣∣ (∑n M ˆing (2.0.29) to the differential operator ∆M = ( ∂2i )
M

i=1 i.e., (2πi)2M (ξi)2

=1

)
f(ξ)

∣∣ =
i

|ξ|2M

|(∆Mf)∧(ξ)| ≤ CM

︸ ︷︷ ︸)
, it follows that

ˆ(2.0.30) (2π|ξ|)2M |f(ξ)| ≤ CM

for some constant CM > 0. It is easy to see that an estimate of the form (2.0.27) follows from
(2.0.30).
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(2.0.28) follows from (2.0.27) and the fact that∫
1

(2.0.31) dnξ <
Rn (1 + |ξ

∞.
|)n+1

To see that (2.0.31) holds, perform the integration using spherical coordinates on Rn :

1
n

∞
(2.0.32)

∫
1 ρn−

d ξ = ωn dρ,
n+1 n+1

Rn (1 + |ξ|)

∫
ρ=0 (1 + ρ)

def
where ρ = |ξ| def=

√∑n
j=1(ξ

j)2 is the radial variable on Rn, and ωn is the surface area of the unit

ball in Rn. By a simple comparison estimate, it is easy to see that the integral on the right-hand
side of (2.0.32) converges (the integrand behaves like 0 near ρ = 0, and like 1 near ).

ρ2
∞

ˆTo show that similar results hold for for ∂~βf, we first use (2.0.19e) to conclude that

ˆ∂~βf(ξ) = [(− ~
(2.0.33) 2πix)βf(x)]∧(ξ).

Furthermore, the function (− ~
2πix)βf(x) also satisfies the hypotheses of the proposition. We can

ˆ ˆ ~
therefore repeat the above arguments with ∂~βf in place of f and (−2πix)βf(x) in place of f.

�

3. Gaussians

One of the most important classes of functions in Fourier theory is the class of Gaussians. The
next proposition shows that this class interacts very nicely with the Fourier transform.

Proposition 3.0.3 (The Fourier transform of a Gaussian is another Gaussian). Let f(x) =
exp(−π∑z|x|2), where z = a + ib is a complex number, a, b ∈ R, a > 0, x = (x1, · · · , xn)

2 n j 2
∈ Rn, and

|x| = j=1(x ) . Then

ˆ(3.0.34) f(ξ) = z−n/2exp(−π|ξ|2/z).

Proof. We consider only the case b = 0, so that z = a. The cases b = 0 would follow from an
argument similar to the one we give below but requiring a few additional technical details. We first
address the case n = 1. Then by properties (2.0.19e)-(2.0.19f) of Theorem 2.1, we have that

i dˆ 2 2 i 2π
(3.0.35) f ′(ξ) = (−2πixe−aπx )∧(ξ) = ( e−aπx )∧ ˆ ˆ(ξ) = 2πiξf(ξ) =

−
ξf(ξ).

a dx a a

We can view (3.0.35) as

d −2πˆ(3.0.36) ln f = ξ.
dξ a

Integrating (3.0.36) with respect to ξ and then exponentiating both sides, we conclude that

ˆ(3.0.37) f(ξ) = Cexp(−πξ2/a.)
ˆFurthermore, the constant C clearly must be equal to f(0).

6
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ˆWe now compute f(0) :

ˆ def
(3.0.38) f(0) =

∫ 1

2

e−πax e−2πiξ0 dx = a−1/2.
R

Note that you have previously calculated this integral

︷ ︸︸ ︷
in your homework. Combining (3.0.36) and

(3.0.38), we arrive at the desired expression (3.0.34) in the case n = 1.
To treat the case of general n, we note that the properties of the exponential function and the

Fubini theorem together allow us to reduce it to the case of n = 1 :

ˆ(3.0.39) f(ξ) =

∫
exp(

n

−πa|x|2)exp(−2πiξ · x) dnx∫R ( ∑n ∑n
= exp

Rn
− πa (xk)2

k=1

)
exp
(
− 2πi ξjxj dnx

∫ j=1

n

∏n
)

=
Rn j=1

{
exp
(
− πa(xj)2

)
exp(−2πiξjxj)

}
dnx

=
∏{∫

exp
(
− πa(xj)2

)
exp(−2πiξjxj) dxj

j=1 R

n

}
=
∏

a−1/2exp
j=1

(
− π(ξj)2/a

n

)
= a−n/2exp

(
− πa−1

= a−n/2exp( π ξ 2/a

∑
(ξj)2

j=1

)
− | | ).

We have thus shown (3.0.34).
�

4. Fourier Inversion and the Plancherel Theorem

The next lemma is very important. It shows that the Fourier transform interacts nicely with the
L2 inner product.

Lemma 4.0.4 (Interaction of the Fourier transform with the L2 inner product). Assume
that f, g ∈ L1. Then

(4.0.40)

∫
f̂(x)g(x) dnx =

∫
f(x)ĝ(x) dnx.

Rn Rn

Alternatively, in terms of the complex L2 inner product, we have that

ˆ(4.0.41) 〈f, g〉 = 〈f, g∨〉.
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Proof. Using the definition of the Fourier transform and Fubini’s theorem, the left-hand side of
(4.0.40) is equal to

(4.0.42)

∫ ∫
f(ξ)g(x)e−2πiξ·x dnξ dnx.

Rn Rn

By the same reasoning, this is also equal to the right-hand side of (4.0.40).
To obtain (4.0.41), simply replace g with ḡ in the identity (4.0.40) and use property (2.0.19g).

�

The next theorem is central to Fourier analysis. It shows that the operators ∧ and ∨ are inverses
ˆof each other whenever f and f are nice functions.

Theorem 4.1 (Fourier inversion theorem). Suppose that f : Rn → C is a continuous function,

that f ∈ L1 ˆ, and that f ∈ L1. Then

ˆ(4.0.43) (f)∨ = (f∨)∧ = f.

That is, the operators ∧ and ∨ are inverses of each other.

Proof. We first note that

ˆ(f)∨
def

(4.0.44) (x) =

∫ {∫
f(y)e−2πiy·ξ dny e2πix·ξ dnξ.

Rn Rn

Note that the integral in (4.0.44) is not absolutely convergent

}
when viewed as a function of (y, ξ) ∈

Rn × Rn. Thus, our proof of (4.0.43) will involve a slightly delicate limiting procedure that makes
use of the auxiliary function

def
(4.0.45) φ(t, ξ) = exp(−πt2|ξ|2 + 2πiξ · x).

Note that (2.0.19b) and Proposition 3.0.3 together imply that

ˆ def
(4.0.46) φ(y) = t−nexp(−π|x− y|2/t2) = Γ(t, x− y),

where

def
(4.0.47) Γ(t; y) = t−nexp(−π|y|2/t2).

Also note that Γ(t, y) is just the fundamental solution of the heat equation with diffusion constant
D = 1 . In particular, we previously showed in our study of the heat equation that

4π

(4.0.48)

∫
Γ(t, y) dny = 1

Rn

for all t > 0. We now compute that
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(Γ(t, ·) ∗ def
(4.0.49) f)(x) =

∫
Γ(t, x

Rn
− y)f(y) dny

=

∫
φ̂(t, y)f(y) dny

Rn

=

∫
ˆφ(t, ξ)f(ξ) dnξ

Rn

=

∫
exp(−πt2|ξ|2 ˆ)f(ξ)exp(2πiξ x

Rn
· ) dnξ

During our study of the heat equation, we showed that the left-hand side of (4.0.49) converges to
f(x) as t ↓ 0. To complete the proof of the theorem, it remains to show that the right-hand side
converges to ∫

ˆ · n def ˆd ∨ def ˆ(4.0.50) f(ξ)exp(2πiξ x) ξ = (f) (x) = (f)∧(
R

−x)
n

as t ↓ 0. To this end, given any number ε > 0, choose a ball BR of radius R centered at the origin
such that ∫

BcR

| ˆ(4.0.51) f(ξ)| dnξ ≤ ε.

Above, Bc ˆ
R denotes the complement of the ball. It is possible to choose such a ball since f ∈ L1.

We then estimate

(4.0.52)
∣∣∣∣∫ ˆexp(−πt2|ξ|2 ˆ)f(ξ)exp(2πiξ x

n

· ) dnξ f∨(x)
R

−
∣

def
=

∣∣∣∣∣∫
ˆexp(

∫∣∣ − ˆπt2|ξ|2)f(ξ)exp(2πiξ · x) dnξ − f(ξ)exp(2πiξ
Rn Rn

· x) dnξ

∣
≤
∫ ∣∣ |ξ|2 ˆexp(−πt2 ) 1

∣∣
R

−

∣∣∣|f(ξ)
n

| dnξ

≤1

≤
∣

ˆ ˆmax ∣exp(−πt2|ξ|2)− 1 f
ξ∈BR

∣ ∫∣
BR

| (ξ)| dnξ +

∫
Bc

︷
|exp(−πt

︸︸
2|ξ|2)− 1

︷
| |f(ξ)| dnξ

≤ max
ξ∈BR

max

∣∣ R

ˆexp(−πt2|ξ|2)− 1
∣∣‖f‖L1 +

∫
|f̂(ξ)

Bc
| dnξ

R

≤
∣∣ ∣∣‖ ˆexp(−πt2|ξ|2)− 1 f 1

ξ
‖L + ε.

∈BR

As t ↓ 0, the first term on the right-hand side of (4.0.52) converges to 0. In particular, if t is
sufficiently small, then the right-hand side of (4.0.52) will be no larger than 2ε. Since this holds
for any ε > 0, we have thus shown that the right-hand side of (4.0.49) converges to the expression

(4.0.50) as t ↓ ˆ0, i.e., that it converges to (f)∨(x). Since, as we have previously noted, the left-hand
ˆside of (4.0.49) converges to f(x) as t ↓ 0, we have thus shown that (f)∨(x) = f(x).

It can similarly be shown that (f∨)∧(x) = f(x). This completes the proof of (4.0.43).
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The next theorem plays a central role in many areas of PDE and analysis. It shows that the
Fourier transform preserves the L2 norm of functions.

Theorem 4.2 (The Plancherel theorem). Suppose that f, g : Rn

1

→ C are continuous functions,

that f, g ∈ L ∩ L2 ˆ, and that f, ĝ ∈ L1 ˆ. Then f, ĝ ∈ L2, and

〈f, g〉 = 〈 ˆ(4.0.53) f, ĝ〉,
i.e., the Fourier transform preserves the L2 inner product. In particular, by setting f = g, it follows
from (4.0.53) that

‖f‖L2 = ‖ ˆ(4.0.54) f‖L2 .

Proof. By applying (4.0.41) with g replaced by ĝ, we have that

〈 ˆ(4.0.55) f, ĝ〉 = 〈f, (ĝ)∨〉.
By the Fourier inversion theorem (i.e. Theorem 4.1), we have that (ĝ)∨ = g, and so the right-hand
side of (4.0.55) is equal to

(4.0.56) 〈f, g〉.
We have thus shown (4.0.53).

�
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