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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 19: Schrödinger’s Equation

1. Introduction

Schrödinger’s equation is the fundamental PDE of quantum mechanics. In the case of a single
quantum particle, the unknown function is the wave function ψ(t, x), which is a map from R1+n

into the complex numbers:

ψ : R1+n → C.

Above and throughout these notes, t is the time coordinate, and x = (x1, · · · , xn) are the spatial
coordinates. Schrödinger’s equation is

1
(1.0.1) i∂tψ(t, x) + ∆ψ(t, x) = V (t, x)ψ(t, x),

2

where ∆ =
∑n

i=1 ∂
2
i is the usual Laplacian with respect to the spatial variables, and V (t, x) is the

potential, which models the interaction of the particle with its environment. In this course, we
will mainly consider the case of free particles, in which V = 0 (i.e., the homogeneous Schrödinger
equation). In the case of free particles, there is an important family of solutions to (1.0.1), namely
the free waves. The free wave solutions provide some important intuition about how solutions to
the homogeneous Schrödinger equation behave. To derive the free wave solutions, we first make the
assumption that

(1.0.2) ψ(t, x) = ei(ωt−ξ·x),

where · is the Euclidean dot product. Above, ω ∈ R is the frequency, and ξ
ξ

∈ Rn is the wave vector.

Note that (1.0.2) can be written as ei|ξ|(
ω t− ·x)|ξ| |ξ| , where |ξ| is the Euclidean length of ξ. Since ξ is|ξ|

a unit vector in Rn, it therefore follows that the speed of the plane wave is

ω
(1.0.3) .

|ξ|

Plugging (1.0.2) into (1.0.1), we derive the algebraic relation

−(ω +
|ξ|2

(1.0.4) )ei(ωt+ξ·x) = 0,
2

which implies
1
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ω =
|ξ|2

(1.0.5) − ,
2

ω
=
|ξ

(1.0.6)
|

|ξ
− .

| 2

These conditions are necessary and sufficient in order for the function given in (1.0.2) to solve
(1.0.1) when V = 0. Note in particular that (1.0.6) shows that the speed of the plane wave solution
depends on |ξ|, and in particular that larger |ξ|′s lead to larger speeds. The dependence of the speed
of the plane wave on ξ is known as dispersion, and (1.0.5) is known as the dispersion relation of
Schrödinger’s equation.

Dispersion plays a very important role in the analysis of certain PDEs, and in particular Schrödinger’s
equation. Heuristically, one sometimes imagines that a “typical” solution to a dispersive PDE is
composed of many free waves, each moving at a different speed and/or spatial direction (at least
when the dispersion relation is non-trivial). The dispersive nature of the PDE suggests that the
different free wave components in the solution should separate from each other. As we will see
(see e.g. Theorem 2.1), this heuristic argument is sometimes rigorously borne out, and separation
can cause the overall amplitude of the solution to decay in time (frequently at a rate of t to some
negative power).

2. The Fundamental Solution

We are now going to study the following global Cauchy problem for Schrödinger’s equation:

1
(2.0.7a) i∂tψ(t, x) + ∆ψ(t, x) = 0,

2
(2.0.7b) ψ(0, x) = φ(x).

Let’s start by momentarily forgetting about the initial data and instead trying to find the fundamen-
tal solution K(t, x) to equation (2.0.7a). We will precisely define the fundamental solution below;
it is analogous to the fundamental solution for the heat equation. As we will see, the techniques
from Fourier analysis that we have previously developed will allow us to derive the fundamental
solution with relative ease. To this end, we set ψ(t, x) = K(t, x), take the spatial Fourier of equation

ˆ(2.0.7a), and use the Fourier transform property (∂ α~
α~K)∧(t, ξ) = (2πiξ) K(t, ξ) (and in particular

∧ − 2| |2 ˆ ˆ(∆K) (t, ξ) = 4π ξ K(t, ξ)) to deduce the following ODE for K(t, ξ) :

ˆ ˆ(2.0.8) i∂ K(t, ξ)− 2π2 ξ|2t | K(t, ξ) = 0.

We rewrite (2.0.8) as

ˆ(2.0.9) ∂t lnK(t, ξ) = −2π2i|ξ|2,

which can be easily integrated to give

K̂(t, ξ) = Ce−2π
2it|ξ|2(2.0.10) ,

where C(ξ) is a constant that we have to calculate.



MATH 18.152 COURSE NOTES - CLASS MEETING # 19 3

To calculate C(ξ), we recall that we are ultimately trying to solve the following initial value
problem for Schrödinger’s equation:

1
(2.0.11a) i∂tψ(t, x) + ∆ψ(t, x) = 0,

2
(2.0.11b) ψ(0, x) = φ(x).

Since K(t, x) is supposed to be the fundamental solution, we would like (in analogy with the results
of our study of the heat equation) the solution to (2.0.11a) - (2.0.11b) to be of the form

(2.0.12) ψ(t, x) = (K(t, ·) ∗ φ(·))(x).

Formally taking the Fourier transform of (2.0.12), using the fact that the Fourier transform turns
convolutions into products, and using (2.0.10), we arrive at the formal relation

ˆ ˆ ˆ 2 2 ˆ(2.0.13) ψ(t, ξ) = K(t, ξ)φ(ξ) = C(ξ)e−2π it|ξ| φ(ξ).

Since (2.0.13) must in particular hold at t = 0, it is easy to see that

(2.0.14) C(ξ) = 1.

Thus, the spatial Fourier transform of K can be expressed as

ˆ 2 2

(2.0.15) K(t, ξ) = e−2π it|ξ| .

In the next proposition, we make rigorous sense of the above formal calculations, and we calculate
ˆK(t, x) from K(t, ξ).

Proposition 2.0.1 (Calculation of the Fundamental Solution K(t, x) for Schrödinger’s
equation). Let φ(x) be a smooth compactly supported function, and let ψ(t, x) be the function
whose spatial Fourier transform is defined as in (2.0.13):

ˆ ˆ ˆ(2.0.16) ψ(t, ξ) = K(t, ξ)φ(ξ),

ˆwhere K(t, ξ) is defined in (2.0.15). Then if t > 0, we have that

def
(2.0.17) ψ(t, x) = (K(t, ·) ∗ φ)(x) =

∫
K(t, y)φ(x− y) dny =

∫
K(t, x− y)φ(y) dny,

Rn Rn

where

1
K(t, x) = i

|x|2

(2.0.18) e 2t .
(2πit)n/2

Above, i1/2 = eiπ/4 = √1 (1 + i).
2

ˆRemark 2.0.1. We refer to K(t, ξ) as the Fourier transform of K(t, x), and K(t, x) as the inverse
ˆFourier transform of K(t, ξ).
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Remark 2.0.2. Note that K(t, ·) is not an element of L1 because
∫

K(t, x) dnx = . Since manyR | | ∞
of our previous results for the Fourier transform used the assumption that K(t, ·) ∈ L1, our analysis
of K(t, x) is more delicate than these results.

Proof. For simplicity, let’s consider only the case n = 1. Previously, we showed that since φ is
ˆsmooth and compactly supported, φ is smooth, is rapidly decaying at infinity, and is an element of

L1 ˆ ˆ. Therefore, the same is true of the function ψ(ξ) = e−2π
2it|ξ|2φ(ξ). Thus, by the Fourier inversion

ˆtheorem, ψ(t, x) is the inverse Fourier transform of ψ(t, ξ) :

ˆ ∨ def
∫

2πiξx ˆ
∫

2πiξx −2π2it|ξ|2 ˆ(2.0.19) ψ(t, x) = (ψ) (t, x) = e ψ(t, ξ) dξ = e e φ(ξ) dξ.
R R

ˆTo complete the proof, we will use that fact that the aforementioned properties of φ together
with the expression (2.0.19) allow us to express

(2.0.20) ψ(t, x) = lim

∫
e2πiξx

2 ˆe−2π
2(δ+i)t|ξ| φ(ξ) dx.

δ→0+ R

We will show (2.0.20) at the end of the proof; let us take it for granted at the moment.
Defining

def 2 2

(2.0.21) fδ;t(ξ) = e−2π (δ+i)t|ξ| ,

we see that (2.0.20) is by definition equivalent to

ˆ(2.0.22) ψ(t, x) = lim (fδ;tφ)∨(x).
δ→0+

Note that fδ;t is a Gaussian whose argument has negative real part. Thus, we have previously
calculated its inverse Fourier transform:

1
fδ
∨ 2

(2.0.23) ;t(x) = √ e−|x| /(2t(δ+i)).
2π(δ + i)t

Furthermore, it is easy to see that

1 2

(2.0.24) lim f∨ (x) = √ ei|x| /(2t)δ;t .
δ→0+ 2πit

We note that in the formula (2.0.24),
√
i = eiπ/4 = √1 (1 + i).

2

Using (2.0.22), the Fourier transform + Fourier inversion identity (uv)∨ = [u∨ ∗ v∨], and the
ˆFourier inversion theorem (φ)∨ = φ, we have that

ψ(t, x) = lim [fδ
∨
;t ∗

def
(2.0.25) φ](x) = lim

∫
fδ
∨
;t(x− y)φ(y) dy

δ→0+ δ→0+ R

=

∫
lim fδ

∨
;t(x− y)φ(y) dy

R δ→0+

1
= √

∫
ei|x−y|

2/(2t)φ(y) dy.
2πit R
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We are allowed to bring the limit inside the integral in (2.0.25) because φ(y) is smooth and compactly
supported and because (for each fixed t > 0) the limit (2.0.24) is achieved uniformly on compact
spatial sets. We have thus shown (2.0.17).

It remains to prove (2.0.20). We need to show that

(2.0.26)
∣ ∫

e2πiξxe−2π
2it|ξ|2(e−2π2δt|ξ|2

R
− 1

go

)
φ̂(ξ) dξ

es to 0 as δ ↓ 0. As we hav

∣
e previously discussed several times, the

split the integral over R into an integral over a ball [ R,R

∣∣∣∣
key to such an estimate is to

− ] and its complement. More precisely,
for any R > 0, the expression (2.0.26) can be bounded as follows:

≤
∫

| −2π2 2

e δt|ξ| − 1||ˆ(2.0.27) φ(ξ)| dξ +

∫
|e−2π2δt ξ︸ ︷︷| |2 − ˆ1 φ

[−R,R]

|
{| R

| (ξ)| dξ
ξ|≥ }

≤1

≤ max |e−2π2δt|ξ|2 − |φ̂(ξ)| ˆ1|
∫

dx+ )

︸
∈[−R,R] [−R ]

∫
ξ

ξ {|ξ|≥R
|φ(

,R

| dξ
}

def
= I + II.

Let ε > 0 be a positive number. In our previous studies of the Fourier transform, we showed that
ˆ def ˆ(see also the remarks above)

∫
|φ| dξ = ‖φ‖L1 < ∞. Now by Taylor expanding, we see that theR

following inequality holds whenever R > 0, ξ ∈ [−R,R], and δtR2 is sufficiently small:

(2.0.28) | −2π2

e δt|ξ|2 − 1| ≤ CδtR2,

where C is a positive constant. Thus, we have the following estimate, valid whenever δtR2 is
sufficiently small:

(2.0.29) |I| ≤ CδtR2

∫
|ˆ ˆφ(ξ) dx

[−R
| ≤ CεtR2

]

‖φ‖L1 .
,R

Furthermore, since ‖φ̂‖L1 <∞, if R is sufficiently large, then

(2.0.30) |II| ≤ ε.

Thus, if t is fixed, R is first chosen to be sufficiently large, and then δ is chosen to be sufficiently
small, we have that

(2.0.31) |I|+ |II| ≤ CδtR2 + ε ≤ 2ε.

In total, we have shown that if δ is sufficiently small, then (2.0.26) is ≤ 2ε. Since this holds for any
ε > 0, we have thus shown (2.0.20).

�

We now formally define the fundamental solution.

Definition 2.0.1 (The Fundamental Solution to Schrödinger’s equation). The fundamental
|x|2

solution associated to (1.0.1) is the function K(t, x) = 1 ei 2t
(2πit)n/2

given in (2.0.18).
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As an exercise, let’s check that K(t, x) verifies Schrödinger equation.

Lemma 2.0.2 (K(t, x) verifies the free Schrödinger equation). For t > 0, K(t, x) is a solution
to the free Schrödinger equation.

Proof. We use the chain rule to calculate

| |2 i | |2x x

(2.0.32) ∂ i
je 2t = xj ei 2t ,

t

2 i
|x|2 ( i(xj)2 i

(2.0.33) ∂j e 2t = 1 + ei
|x|2
2t ,

t t
1 1 |

∆K(t, x) =

)
x n

(2.0.34) ei
|2

2t i
n/2

( |x|2
ei
|x|2
2t ,

2 (2πit) 2t
−

2t2

i |x
i
|2
( n i

i∂

)
tK(t, x) = e 2t

(2πit)n/2
|x|2

(2.0.35) − − .
2t 2t2

From the last two calculations, it easily follows that

)

1
(2.0.36) i∂tK(t, x) + ∆K(t, x) = 0.

2

�

We would like our fundamental solution to have the property that limt→0+ ψ(t, x) = φ(x) for nice
def

functions φ, where ψ(t, x) = [K(t, ·) ∗ φ(·)](x). Now using (2.0.13), if the initial datum φ is smooth
ˆand compactly supported (and therefore, as previously shown, φ is smooth and rapidly decaying),

it is not difficult to show that

‖ ˆ ˆ(2.0.37) lim ψ(t,
t↓0

·)− φ‖L2 = 0.

ˆ ˆ(2.0.13) shows that the transformed function ψ(t, ) converges to the transformed datum φ( ) in
def

the L2

· ·
norm as t ↓ 0. But how does the function ψ(t, ·) = [K(t,

1
∫ ·) φ(·)](x) behave as t ↓ 0? By

|

∗
− |2x y

(2.0.17), this is equivalent to studying the behavior of 2
n/ n e

i
t

2 φ(y) dny as t
(2πit) R ↓ 0. The next

proposition briefly addresses this surprisingly difficult question.

Proposition 2.0.3 (The behavior of K(t, ·) ∗ φ(·) as t ↓ 0). Let φ ∈ C∞(Rn
c ). Then

1
(2.0.38) lim

→0+ (2πit)n/2t

∫
|x

ei
−y|2
2t φ(y) dny = φ(x).

Rn

Proof. The proof of this proposition requires a technically involved technique from Fourier Analysis
known as the method of stationary phase; it is therefore slightly beyond the scope of this course.
The main difficulty is that the most of the important behavior in (2.0.38) is due to the rapid
oscillation in y of the integrand (except when y is near x!) as t ↓ 0. �

We are now ready to state and prove the main theorem concerning the solution to the free
Schrödinger equation.



MATH 18.152 COURSE NOTES - CLASS MEETING # 19 7

Theorem 2.1 (The Solution to the Global Cauchy Problem Schrödinger’s Equation
and the Dispersive Estimate). Let φ(x)

n
∈ C n

c
∞(R ). Then there exists a unique solution ψ ∈

C∞((0,∞)× R ) to the free Schrödinger equation

1
(2.0.39a) i∂tψ(t, x) + ∆ψ(t, x) = 0, t > 0, x ∈ Rn,

2
(2.0.39b) ψ(0, x) = φ(x), x ∈ Rn.

The solution can be expressed as

(2.0.40) ψ(t, x) = [K(t, ·) ∗ φ(·)](x),

where K(t, x) is the fundamental solution defined in (2.0.18).
Furthermore, for each t > 0, the solution ψ(t, x) verifies the dispersive estimate

def C def C
(2.0.41) ‖ψ(t, ·)‖C0 = max ψ(t, x) φ L1 = φ(x) dnx.

x∈Rn
| | ≤

tn/2
‖ ‖

tn/2
| |

Above, C > 0 is a constant that does not depend on the initial data.

∫

Proof. Let L def
= i∂ 1

t + ∆x denote the free Schrödinger operator. By definition, we have that
2

1 | − |2x y

(2.0.42) [K(t, ·) ∗ φ(·)](x) =

∫
φ(y) ei 2 dnt y.

Rn (2πit)n/2

According to our previously discussed differentiation-under-the-integral theorem (and making use
of our assumptions on φ(x)), for t > 0, we can differentiate under the integral in (2.0.42) and use
Lemma 2.0.2 to deduce that

1L
| − |2x y

(2.0.43) [K(t, ·) ∗ φ(·)](x) =

∫
φ(y)L

{
ei t

}
dn2 y = 0.

2
n (2πit)n/R

Thus, φ ∗Kt verifies Schrödinger’s equation (2.0.39a).
The fact that ψ ∈ C∞((0,∞)× Rn) follows from expressing∫

1 2

−
y|

[K(t, ·) ∗ φ(·
|

(2.0.44) )](x) = φ(x y) ei 2t dny.
(2π n/2

Rn it)

and repeatedly differentiating with respect to x under the integral.
To prove (2.0.41), we note that the following simple pointwise inequality follows easily from

(2.0.42):

1
(2.0.45) |

|x−y|2

[K(t, ·) ∗ φ(·)](x)| ≤
∣∣∫∣ φ(y) ei 2t dny

2
Rn (2πit)n/

1

∣∣∣
1≤

∣
|φ(y) ny

(2π)n/2tn/2 Rn
| def
d =

(2

∣∫
.

π)n/ tn/2
‖φ‖L1

2

Taking the max over all x ∈ Rn, the estimate (2.0.41) thus follows.
�
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Let’s now prove a very important property of sufficiently regular solutions to the free Schrödinger
equation: their L2 norm is constant in time.

Proposition 2.0.4 (Preservation of L2 norm). Under the assumptions of Theorem 2.1, we have
that

L2 norm of the data

(2.0.46) ‖ψ(t, ·)‖L2 = ‖φ‖L2 ,

wher∫ e the L2 norm on the left-hand of (2.0.46) is taken

︷ ︸︸
over

︷
the spatial variables only. In particular,

if 2 n
n |φ(x)| d x = 1, then

∫
n |ψ(t, x) 2 dnx = 1 holds for all t 0.R R | ≥

Proof. We give two proofs, the first using the original solution, and the second using its Fourier
transform; both proofs are important. For the first proof, we begin by noting that if

1
(2.0.47) i∂tψ(t, x) + ∆ψ(t, x) = 0,

2

then by taking the complex conjugate of both sides, we have that

1− ¯ ¯(2.0.48) i∂tψ(t, x) + ∆ψ(t, x) = 0,
2

¯where ψ denotes the complex conjugate of ψ.
2 | |2 ¯Differentiating under the integral in the definition of the L norm, recalling that ψ = ψψ, and

using (2.0.47) - (2.0.48), we thus deduce that

d d‖ ¯ψ( · ¯ ¯(2.0.49) t, )‖2L2 =

∫
ψ(t, x)ψ(t, x) dnx =

∫
∂tψ(t, x)ψ(t, x) + ψ(t, x)∂tψ(t, x) dnx

dt dt Rn Rn

i ¯ ¯=

∫
∆ψ(t, x)ψ(t, x)− ψ(t, x)∆ψ(t, x) dnx.

2 Rn

Integrating by parts on the right-hand side of (2.0.49), we conclude that

d i
(2.0.50)

dt
‖ψ(t, ·)‖2L2 = − ∇ ∇ ¯ψ(t, x) · ∇ψ̄(t, x)− ψ(t, x)

Rn
· ∇ψ(t, x) dnx = 0,

2

where · denotes the Euclidean dot pro

∫
duct. We have thus shown (2.0.46).

For the second proof, we begin by recalling (2.0.13) and (2.0.14):

ˆ 2 2 ˆ(2.0.51) ψ(t, ξ) = e−2π it|ξ| φ(ξ).

In particular, (2.0.51) implies that

|ψ̂(t, ξ)|2 = |ˆ(2.0.52) φ(ξ)|2.
Integrating (2.0.52) over Rn, we deduce that

‖ ˆ 2 ˆ(2.0.53) ψ(t, ·)‖L = ‖φ‖L2 ,
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where the L2 norm on the left-hand side of (2.0.53) is taken over the ξ variables only. Finally, by
Plancherel’s theorem, we see that (2.0.53) implies

(2.0.54) ‖ψ(t, ·)‖L2 = ‖φ‖L2 .

Again, we have shown (2.0.46).
�
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