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18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck

Class Meeting # 24: Transport Equations and Burger’s Equation
In these notes, we introduce a class of evolution PDEs known as transport equations. Such

equations arise in a physical context whenever a quantity is “transported” in a certain direction.
Some important physical examples include the mass density flow for an incompressible fluid, and
the Boltzmann equation of kinetic theory. We discuss both linear transport equations and a famous
nonlinear transport equation known as Burger’s equation. One of our major goals is to show that
in contrast to the case of linear PDEs, solutions to Burger’s equations can develop singularities in
finite time.

1. Transport Equations

Linear homogeneous transport equations are PDEs of the form

(1.0.1) Xµ∂µu = 0,

where (x0, x1, · · · , xn) are coordinates on R1+n and X(x0, · · · , xn) is a vectorfield on R1+n. As we
will soon see, the transport equation is closely connected to the following system of ODEs for the
unknowns γµ:

d
(1.0.2) γµ(s) = Xµ(γ0(s), γ1(s), · · · , γn(s)), (µ = 0, 1, · · · , n).

ds

Given initial conditions γµ(0), the solutions to (1.0.2) are curves γ : I → R1+n, where I is an interval.
These curves are known as the integral curves of the vectorfield X. They are also known as the
characteristic curves associated to the PDE (1.0.1). The next proposition clarifies the connection
between the transport equation (1.0.1) and its characteristic curves.

Proposition 1.0.1 (Connection between transport equations and ODEs). If u solves the
transport equation (1.0.1), then u is constant along the integral curves of X. More precisely, if γ(s)
is any solution to (1.0.2), then

d
(1.0.3) u γ0(s),

ds
· · · , γn(s) = 0.

Proof. Using the chain rule, (1.0.2), and

(
(1.0.1), we have

)
that

n
d

(1.0.4) u
(
γ0

∂ d
(s), · · · , γn(s)

)
=

ds

∑
µ=0

(
u

∂xµ
|γ(s) γµ(s)

ds∑n ( ∂

)
= u µ

γ(s)X (γ(s)) = (Xµ∂µu) γ(s) = 0.
∂xµ

µ=0

1

)
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�

1.1. Constant vectorfields. Let’s consider a very special case of (1.0.1) in which the components
of X are constant. That is, we assume that

0 1
(1.1.1) X = (X ,X ,

µ

· · · n
, X )

where the X are constants independent of (x0, · · · , xn).
In this case, the solutions to the system (1.0.2) of ODEs are the straight lines

(1.1.2) γ(s) = γ̊ + sX,

where γ̊ = γ(0) is a constant vector.
For concreteness, let’s also assume that

0
(1.1.3) X = 1

and as usual, let’s use the alternate notation x0 = t. Let’s assume that we are given Cauchy data
for u on the hypersurface {t = 0} × Rn :

(1.1.4) u(0, x1, . . . , xn) = f(x1, · · · , xn),

where f is a function on Rn. We now note that

1 n
(1.1.5) (t, x1, · · · , xn) = (0, x1 − tX , · · · , xn − tX ) + tX,

which implies that the spacetime point (t, x1, · · · , xn) lies on the characteristic curve γ(t) passing
1 n

through the “initial” point (0, x1 − tX , · · · , xn − tX ) ⊂ {t = 0} × Rn. Therefore, by Proposition
1.0.1, we have that

(1.1.6) u(0, x1, . . . , xn) = f(x1 − 1
tX , · · · xn − n

, tX ),

and we have explicitly solved the PDE (1.0.1).

2. A Nonlinear Scalar PDE: Burger’s (Inviscid) Equation

Burger’s equation is a simple nonlinear PDE in 1+1 dimensions. It is often used to illustrate some
important features of (some) nonlinear PDEs. As we will see, it can be viewed as a nonlinear version
of the transport equation. Our main goal in these next two sections is to illustrate a phenomenon
not found in linear PDEs : the formation of a singularity in the solution.

Burger’s equation is the following PDE for the function u(t, x) :

(2.0.7) ∂tu+ u∂xu = 0, (t, x) ∈ [0,∞)× R.
As we will see, the Cauchy problem (i.e., the initial value problem in which the datum u(0, x) is
prescribed) for (2.0.7) is well-posed.

Equation (2.0.7) is a simple example of a nonlinear conservation law. More precisely, the next
proposition shows that under suitable assumptions, the spatial L2 norm of solutions to (2.0.7) is
preserved in time.
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Proposition 2.0.1 (Burger’s equation is a conservation law). Let T ≥ 0, and let u(t, x) be

a C1 solution to (2.0.7) on ST
def
= [0, T ] × R. Assume that for each fixed t ∈ [0, T ], we have that

limx→±∞ u(t, x) = 0. Then for (t, x) ∈ ST , we have that∫
R
u2(t, x) dx =

∫
R
u2(0, x) dx,(2.0.8)

i.e., the spatial L2 norm of u(t, ·) is preserved in time.

Proof. Multiplying both sides of (2.0.7) by u, we deduce that

1

2
∂t(u

2) +
1

3
∂x(u

3) = 0.(2.0.9)

Integrating (2.0.9) over R, using the Fundamental Theorem of calculus and the assumption on the
behavior of u(t, x) as x→ ±∞, and “un-differentiating” under the integral, we deduce that

1

2

d

dt

∫
R
|u(t, x)|2 dx = 0.(2.0.10)

The proposition now follows from (2.0.10).
�

Notice that (2.0.7) can be viewed as as a transport equation whose speed and direction depend on
the solution u itself. As in the case of transport equations, we can define the characteristic curves
associated to a solution of (2.0.7).

Definition 2.0.1. Let u be a solution of (2.0.7). The characteristic curves associated to u are the
solutions to the following system of ODEs:

d

ds
γ0 = 1,(2.0.11a)

d

ds
γ1 = u ◦ γ = u(γ0(s), γ1(s)).(2.0.11b)

Remark 2.0.1. Equation (2.0.11a) shows that γ0(s) = s + c, where c is a constant. There is no
loss of generality in parameterizing the curve with the constant c set equal to 0.

The next two propositions are essential for our analysis of Burger’s equation.

Proposition 2.0.2 (Burger solutions are constant along characteristics). C1 solutions to
(2.0.7) are constant along the characteristic curves (2.0.11a) - (2.0.11b).

Proof. Using the chain rule and the equations (2.0.7), (2.0.11a) - (2.0.11b), we compute that

d

ds
[u ◦ γ(s)] = (∂tu)|γ

d

ds
γ0 + (∂xu)|γ

d

ds
γ1 = (∂tu)|γ + u|γ(∂xu)|γ = 0.(2.0.12)

�

Proposition 2.0.3 (Burger characteristics are straight lines). The characteristic curves
(2.0.11a) - (2.0.11b) are straight lines in R1+1.
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Proof. It clearly follows from (2.0.11a) that

d2
(2.0.13) γ0(s) = 0.

ds2

Furthermore, using the ODE (2.0.11b) and the computation (2.0.12), we compute that

d2
γ1

d
(2.0.14) (s) = [u ◦ γ(s)] = 0.

ds2 ds

We have thus shown that d2
2γ

µ(s) = 0 for µ = 0, 1. Thus, the curve γ has 0 acceleration, and is
ds

therefore a straight line.
�

3. “Solving” Burger’s equation

Using the propositions from the previous section, will now exhibit an implicit solution to the
following initial value problem for Burger’s equation:

(3.0.15) ∂tu+ u∂xu = 0, (t, x) ∈ [0,∞)× R,
u(0, x) = f(x), x ∈ R.

Theorem 3.1. Let u be a C1 solution to (3.0.15), and let (t, x) be a spacetime point. With (t, x)
fixed, assume that the implicit equation x = p+f(p)t in the unknown p has a unique solution. Then

(3.0.16) u(t, x) = f(p).

Proof. Let γ(s) = (γ0(s), γ1(s)) denote the characteristic curve passing through the Cartesian (t, x)
spacetime point (0, p) when s = 0, i.e., (γ0(0), γ1(0)) = (0, p). According to the ODEs (2.0.11a)

0

- (2.0.11b) and Proposition 2.0.3, γ(s) is a straight line with constant “t/x” slope γ̇ (0)
γ̇1

= 1 . It
(0) f(p)

therefore follows that

(3.0.17) γ0(s) = s,

(3.0.18) γ1(s) = p+ f(p)s.

Consequently, by Proposition 2.0.2, we have that

(3.0.19) u(s, p+ f(p)s) = u(0, p) = f(p).

Equation (3.0.16) thus follows. �

4. Formation of Singularities

Proposition 2.0.1 shows that the spatial L2 norm of nice solutions to Burger’s equation is preserved
in time. This conserved quantity suggests that the solution can never grow large and therefore that
the solution should exist for all time. However, this intuition is false! The next theorem shows that
even though the L2 norm is preserved, the solution can develop a singularity in finite time, even if
the initial datum f is very small and very nice.
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Theorem 4.1 (Sharp Characterization of Singularity Formation in Burger’s Equation).
Let f ∈ C1(R) be initial data for Burger’s equation (3.0.15). Then the corresponding solution u(t, x)
remains C1 for all (t, x) ∈ [0,∞)× R if and only if f ′(x) ≥ 0 holds for all x ∈ R.

Proof. Suppose that there exists a point x0 such that f ′(x0) < 0. Then there exists a nearby
point x1 > x0 with f(x1) < f(x0). Let γ(xi)(s) denote the characteristic curve passing through
the spacetime point (0, xi) at s = 0. Then by Proposition 2.0.2, u ◦ γ(xi)(s) = f(xi) for all s ≥
0. Furthermore, as in the proof of Theorem 3.1, γ(xi)(s) traces out a straight line with slope (x

def
horizontal, t vertical) mi = 1 Since 1 1( . < , it is easy to check that γ(x ) intersects γ(x ) at

f(x 0i) m m 11 0

the spacetime point (t, x) = x1−x0 x
1 , m0 0

1
−m1x1 . Thus, by Proposition 2.0.2 u(t, x) = f(x

m
− m0m0 1

− 0) and
m1

u(t, x) = f(x1), which is a contradiction.
On the other hand, if f ′(p) ≥ 0 for all p, then

)
for all t0 ≥ 0 and all x0, the equation

(4.0.20) x0 = p+ f(p)t0

has a unique solution p = p 1
0(t0, x0) that depends on (t0, x0) in a C fashion. This fact follows from

e.g. the implicit function theorem since ∂p(p + f(p)t0) = 1 + f ′(p)t0 > 0 (i.e., the right-hand side
of (4.0.20) is strictly increasing in p). Therefore, by Theorem 3.1 u(t0, x0) = f ◦ p0(t0, x0), and
u ∈ C1([0,∞)× R).

�

Exercise 4.0.1. Work through the details to to show that γ intersects γ at (t, x) =
(
x1−x0 m0x0 m1x1

(x0) (x1) 1
m0
− 1 , m

−
0m1
−m1

)
.

Exercise 4.0.2. Find a reference and review the implicit function theorem.
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