18.335 Problem Set 3 Solutions

Problem 1: SVD and low-rank approximations (5+10+10+10 pts)

- (a) $A = \hat{Q}\hat{R}$, where the columns of \hat{Q} are orthonormal and hence $\hat{Q}^*\hat{Q} = I$. Therefore, $A^*A = (\hat{Q}\hat{R})^*(\hat{Q}\hat{R}) = \hat{R}^*(\hat{Q}^*\hat{Q})\hat{R} = \hat{R}^*\hat{R}$. But the singular values of A and \hat{R} are the square roots of the nonzero eigenvalues of A^*A and $\hat{R}^*\hat{R}$, respectively, and since these two matrices are the same the singular values are the same. Q.E.D.
- (b) It is sufficient to show that the reduced SVD $A\hat{V} = \hat{U}\hat{\Sigma}$ is real, since the remaining columns of U and V are formed as a basis for the orthogonal complement of the columns of \hat{U} and \hat{V} , and if the latter are real then their complement is obviously also real. Furthermore, it is sufficient to show that \hat{U} can be chosen real, since $A^*u_i/\sigma_i = v_i$ for each column u_i of \hat{U} and v_i of \hat{U} , and A^* is real. The columns u_i are eigenvectors of $A^*A = B$, which is a real-symmetric matrix, i.e. $Bu_i = \sigma_i^2 u_i$. Suppose that the u_i are not real. Then the real and imaginary parts of u_i are themselves eigenvectors with eigenvalue σ_i^2 (proof: take the real and imaginary parts of $Bu_i = \sigma_i^2 u_i$, since B and σ_i^2 are real). Hence, taking either the real or imaginary parts of the complex u_i (whichever is nonzero) and normalizing them to unit length, we obtain a new purely real \hat{U} . Q.E.D.¹
- (c) We just need to show that, for any $A \in \mathbb{C}^{m \times n}$ with rank < n and for any $\varepsilon > 0$, we can find a full-rank matrix B with $||A B||_2 < \varepsilon$. Form the SVD $A = U\Sigma V^*$ with singular values $\sigma_1, \ldots, \sigma_r$ where r < n is the rank of A. Let $B = U\widetilde{\Sigma}V^*$ where $\widetilde{\Sigma}$ is the same as Σ except that it has n r additional nonzero singular values $\sigma_{k>r} = \varepsilon/2$. From equation 5.4 in the book, $||B A||_2 = \sigma_{r+1} = \varepsilon/2 < \varepsilon$, noting that $A = B_r$ in the notation of the book.
- (d) Take any grayscale photograph (either one of your own, or off the web). Scale it down to be no more than 1500 × 1500 (but not necessarily square), and read it into Matlab as a matrix A with the imread command (type "doc imread" for instructions).
 - (i) This is plotted on a semilog scale in Fig 1, showing that the singular values σ_i decrease *faster* than exponentially with *i*.
 - (ii) Figure 2 shows an image of a handsome fellow, both at full resolution (200 singular values), and using only 16 and 8 singular values. Even with just 8 singular values (4% of the data), the image is still at least somewhat recognizable. If the image were larger (this one is only 282 × 200) then it would probably compress even more.

Problem 2: QR and orthogonal bases (10+10+(5+5+5) pts)

- (a) If A = QR, then $B = RQ = Q^*AQ = Q^{-1}AQ$ is a similarity transformation, and hence has the same eigenvalues as shown in the book. Numerically (and as explained in class and in lecture 28), doing this repeatedly for a Hermitian A (the unshifted QR algorithm) converges to a diagonal matrix Λ of the eigenvalues in descending order. To get the eigenvectors, we observe that if the Q matrices from each step are Q_1, Q_2 , and so on, then we are computing $\cdots Q_2^*Q_1^*AQ_1Q_2\cdots = \Lambda$, or $A = Q\Lambda Q^*$ where $Q = Q_1Q_2\cdots$. By comparison to the formula for diagonalizing A, the columns of Q are the eigenvectors.
- (b) The easiest way to approach this problem is probably to look at the explicit construction of \hat{R} via the Gram-Schmidt algorithms. By inspection, $r_{ij} = q_i^* v_j$ is zero if *i* is even and *j* is odd or vice-versa.

¹There is a slight wrinkle if there are repeated eigenvalues, e.g. $\sigma_1 = \sigma_2$, because the real or imaginary parts of u_1 and u_2 might not be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues must span the same space, and hence we can find a real orthonormal basis with Gram-Schmidt or whatever.

Figure 1: Distribution of the singular values σ_i in the image of Fig. 2, showing that they decrease faster than exponentially with *i*.

Figure 2: Left: full resolution image (albeit JPEG-compressed). Middle: 16% of the singular values. Right: 4% of the singular values.

Because of this, \hat{R} will have a checkerboard pattern of nonzero values:

- (c) Trefethen, problem 10.4:
 - (i) e.g. consider $\theta = \pi/2$ (c = 0, s = 1): $Je_1 = -e_2$ and $Je_2 = e_1$, while $Fe_1 = e_2$ and $Fe_2 = e_1$. *J* rotates clockwise in the plane by θ . *F* is easier to interpret if we write it as *J* multiplied on the right by [-1,0;0,1]: i.e., *F* corresponds to a mirror reflection through the *y* (e_2) axis followed by clockwise rotation by θ . More subtly, *F* corresponds to reflection through a mirror plane corresponding to the *y* axis rotated clockwise by $\theta/2$. That is, let $c_2 = \cos(\theta/2)$ and $s_2 = \cos(\theta/2)$, in which case (recalling the identities $c_2^2 - s_2^2 = c$, $2s_2c_2 = s$):

$$\begin{pmatrix} c_2 & s_2 \\ -s_2 & c_2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c_2 & -s_2 \\ s_2 & c_2 \end{pmatrix} = \begin{pmatrix} -c_2 & s_2 \\ s_2 & c_2 \end{pmatrix} \begin{pmatrix} c_2 & -s_2 \\ s_2 & c_2 \end{pmatrix} = \begin{pmatrix} -c & s \\ s & c \end{pmatrix} = F$$

which shows that F is reflection through the y axis rotated by $\theta/2$.

- (ii) The key thing is to focus on how we perform elimination under a single column of *A*, which we then repeat for each column. For Householder, this is done by a single Householder rotation. Here, since we are using 2×2 rotations, we have to eliminate under a column one number at a time: given 2-component vector $x = \begin{pmatrix} a \\ b \end{pmatrix}$ into $Jx = \begin{pmatrix} ||x||_2 \\ 0 \end{pmatrix}$, where *J* is clockwise rotation by $\theta = \tan^{-1}(b/a)$ [or, on a computer, $\tan 2(b,a)$]. Then we just do this working "bottom-up" from the column: rotate the bottom two rows to introduce one zero, then the next two rows to introduce a second zero, etc.
- (iii) The flops to compute the *J* matrix itself are asymptotically irrelevant, because once *J* is computed it is applied to many columns (all columns from the current one to the right). To multiply *J* by a single 2-component vector requires 4 multiplications and 2 additions, or 6 flops. That is, 6 flops per row per column of the matrix. In contrast, Householder requires each column *x* to be rotated via $x = x - 2v(v^*x)$. If *x* has *m* components, v^*x requires *m* multiplications and m - 1 additions, multiplication by 2v requires *m* more multiplications, and then subtraction from *x* requires *m* more additions, for 4m - 1 flops overall. That is, asymptotically 4 flops per row per column. The 6 flops of Givens is 50% more than the 4 of Householder.

Problem 3: Schur fine (10 + 15 points)

(a) First, let us show that T is normal: substituting $A = QTQ^*$ into $AA^* = A^*A$ yields $QTQ^*QT^*Q^* = QT^*Q^*QTQ^*$ and hence (cancelling the Qs) $TT^* = T^*T$.

The (1,1) entry of T^*T is the squared L_2 norm $(\|\cdot\|_2^2)$ of the first column of T, i.e. $|t_{1,1}|^2$ since T is upper triangular, and the (1,1) entry of TT^* is the squared L_2 norm of the first row of T, i.e. $\sum_i |t_{1,i}|^2$. For these to be equal, we must obviously have $t_{1,i} = 0$ for i > 1, i.e. that the first row is diagonal.

We proceed by induction. Suppose that the first j-1 rows of T are diagonal, and we want to prove this of row j. The (j, j) entry of T^*T is the squared norm of the j-th column, i.e. $\sum_{i \le j} |t_{i,j}|^2$, but this is just $|t_{j,j}|^2$ since $t_{i,j} = 0$ for i < j by induction. The (j, j) entry of TT^* is the squared norm of the j-th row, i.e. $\sum_{i \ge j} |t_{j,i}|^2$. For this to equal $|t_{j,j}|^2$, we must have $t_{j,i} = 0$ for i > j, and hence the j-th row is diagonal. Q.E.D.

(b) The eigenvalues are the roots of det $(T - \lambda I) = \prod_i (t_{i,i} - \lambda) = 0$ —since *T* is upper-triangular, the roots are obviously therefore $\lambda = t_{i,i}$ for i = 1, ..., m. To get the eigenvector for a given $\lambda = t_{i,i}$, it suffices to compute the eigenvector *x* of *T*, since the corresponding eigenvector of *A* is *Qx*.

x satisfies

$$0 = (T - t_{i,i}I)x = \begin{pmatrix} T_1 & u & B \\ & 0 & v^* \\ & & T_2 \end{pmatrix} \begin{pmatrix} x_1 \\ \alpha \\ x_2 \end{pmatrix},$$

where we have broken up $T - t_{i,i}I$ into the first i - 1 rows $(T_1 uB)$, the *i*-th row (which has a zero on the diagonal), and the last m - i rows T_2 ; similarly, we have broken up x into the first i - 1 rows x_1 , the *i*-th row α , and the last m - i rows x_2 . Here, $T_1 \in \mathbb{C}^{(i-1) \times (i-1)}$ and $T_2 \in \mathbb{C}^{(m-i) \times (m-i)}$ are upper-triangular, and are non-singular because by assumption there are no repeated eigenvalues and hence no other $t_{j,j}$ equals $t_{i,i}$. $u \in \mathbb{C}^{i-1}$, $v \in \mathbb{C}^{m-i}$, and $B \in \mathbb{C}^{(i-1) \times (m-i)}$ come from the upper triangle of T and can be anything. Taking the last m - i rows of the above equation, we have $T_2x_2 = 0$, and hence $x_2 = 0$ since T_2 is invertible. Furthermore, we can scale x arbitrarily, so we set $\alpha = 1$. The first i - 1 rows then give us the equation $T_1x_1 + u = 0$, which leads to an upper-triangular system $T_1x_1 = -u$ that we can solve for x_1 .

Now, let us count the number of operations. For the *i*-th eigenvalue $t_{i,i}$, to solve for x_1 requires $\sim (i-1)^2 \sim i^2$ flops to do backsubstitution on an $(i-1) \times (i-1)$ system $T_1x_1 = -u$. Then to compute the eigenvector Qx of A (exploiting the m-i zeros in x) requires $\sim 2mi$ flops. Adding these up for $i = 1 \dots m$, we obtain $\sum_{i=1}^{m} i^2 \sim m^3/3$, and $2m \sum_{i=0}^{m-1} i \sim m^3$, and hence the overall cost is $\sim \frac{4}{3}m^3$ flops (K = 4/3).

18.335J / 6.337J Introduction to Numerical Methods Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.