18.335 Problem Set 3 Solutions

Problem 1: SVD and low-rank approximations ($\mathbf{5}+\mathbf{1 0}+\mathbf{1 0 + 1 0} \mathbf{~ p t s}$)

(a) $A=\hat{Q} \hat{R}$, where the columns of \hat{Q} are orthonormal and hence $\hat{Q}^{*} \hat{Q}=I$. Therefore, $A^{*} A=(\hat{Q} \hat{R})^{*}(\hat{Q} \hat{R})=$ $\hat{R}^{*}\left(\hat{Q}^{*} \hat{Q}\right) \hat{R}=\hat{R}^{*} \hat{R}$. But the singular values of A and \hat{R} are the square roots of the nonzero eigenvalues of $A^{*} A$ and $\hat{R}^{*} \hat{R}$, respectively, and since these two matrices are the same the singular values are the same. Q.E.D.
(b) It is sufficient to show that the reduced SVD $A \hat{V}=\hat{U} \hat{\Sigma}$ is real, since the remaining columns of U and V are formed as a basis for the orthogonal complement of the columns of \hat{U} and \hat{V}, and if the latter are real then their complement is obviously also real. Furthermore, it is sufficient to show that \hat{U} can be chosen real, since $A^{*} u_{i} / \sigma_{i}=v_{i}$ for each column u_{i} of \hat{U} and v_{i} of \hat{U}, and A^{*} is real. The columns u_{i} are eigenvectors of $A^{*} A=B$, which is a real-symmetric matrix, i.e. $B u_{i}=\sigma_{i}^{2} u_{i}$. Suppose that the u_{i} are not real. Then the real and imaginary parts of u_{i} are themselves eigenvectors with eigenvalue σ_{i}^{2} (proof: take the real and imaginary parts of $B u_{i}=\sigma_{i}^{2} u_{i}$, since B and σ_{i}^{2} are real). Hence, taking either the real or imaginary parts of the complex u_{i} (whichever is nonzero) and normalizing them to unit length, we obtain a new purely real \hat{U}. Q.E.D. ${ }^{1}$
(c) We just need to show that, for any $A \in \mathbb{C}^{m \times n}$ with rank $<n$ and for any $\varepsilon>0$, we can find a full-rank matrix B with $\|A-B\|_{2}<\varepsilon$. Form the SVD $A=U \Sigma V^{*}$ with singular values $\sigma_{1}, \ldots, \sigma_{r}$ where $r<n$ is the rank of A. Let $B=U \tilde{\Sigma} V^{*}$ where $\tilde{\Sigma}$ is the same as Σ except that it has $n-r$ additional nonzero singular values $\sigma_{k>r}=\varepsilon / 2$. From equation 5.4 in the book, $\|B-A\|_{2}=\sigma_{r+1}=\varepsilon / 2<\varepsilon$, noting that $A=B_{r}$ in the notation of the book.
(d) Take any grayscale photograph (either one of your own, or off the web). Scale it down to be no more than 1500×1500 (but not necessarily square), and read it into Matlab as a matrix A with the imread command (type "doc imread" for instructions).
(i) This is plotted on a semilog scale in Fig 1 , showing that the singular values σ_{i} decrease faster than exponentially with i.
(ii) Figure 2 shows an image of a handsome fellow, both at full resolution (200 singular values), and using only 16 and 8 singular values. Even with just 8 singular values (4% of the data), the image is still at least somewhat recognizable. If the image were larger (this one is only 282×200) then it would probably compress even more.

Problem 2: QR and orthogonal bases (10+10+(5+5+5) pts)

(a) If $A=Q R$, then $B=R Q=Q^{*} A Q=Q^{-1} A Q$ is a similarity transformation, and hence has the same eigenvalues as shown in the book. Numerically (and as explained in class and in lecture 28), doing this repeatedly for a Hermitian A (the unshifted QR algorithm) converges to a diagonal matrix Λ of the eigenvalues in descending order. To get the eigenvectors, we observe that if the Q matrices from each step are Q_{1}, Q_{2}, and so on, then we are computing $\cdots Q_{2}^{*} Q_{1}^{*} A Q_{1} Q_{2} \cdots=\Lambda$, or $A=Q \Lambda Q^{*}$ where $Q=Q_{1} Q_{2} \cdots$. By comparison to the formula for diagonalizing A, the columns of Q are the eigenvectors.
(b) The easiest way to approach this problem is probably to look at the explicit construction of \hat{R} via the Gram-Schmidt algorithms. By inspection, $r_{i j}=q_{i}^{*} v_{j}$ is zero if i is even and j is odd or vice-versa.

[^0]

Figure 1: Distribution of the singular values σ_{i} in the image of Fig. 2, showing that they decrease faster than exponetially with i.

Figure 2: Left: full resolution image (albeit JPEG-compressed). Middle: 16% of the singular values. Right: 4% of the singular values.

Because of this, \hat{R} will have a checkerboard pattern of nonzero values:

$$
\hat{R}=\left(\begin{array}{cccccccc}
\times & & \times & & \times & & \times & \\
& \times & & \times & & \times & & \times \\
& & \times & & \times & & \times & \\
& & & \times & & \times & & \times \\
& & & & \times & & \times & \\
& & & & & \times & & \times \\
& & & & & & \times & \\
& & & & & & & \times
\end{array}\right) .
$$

(c) Trefethen, problem 10.4:
(i) e.g. consider $\theta=\pi / 2(c=0, s=1)$: $J e_{1}=-e_{2}$ and $J e_{2}=e_{1}$, while $F e_{1}=e_{2}$ and $F e_{2}=e_{1}$. J rotates clockwise in the plane by $\theta . F$ is easier to interpret if we write it as J multiplied on the right by $[-1,0 ; 0,1]$: i.e., F corresponds to a mirror reflection through the $y\left(e_{2}\right)$ axis followed by clockwise rotation by θ. More subtly, F corresponds to reflection through a mirror plane corresponding to the y axis rotated clockwise by $\theta / 2$. That is, let $c_{2}=\cos (\theta / 2)$ and $s_{2}=\cos (\theta / 2)$, in which case (recalling the identities $c_{2}^{2}-s_{2}^{2}=c, 2 s_{2} c_{2}=s$):
$\left(\begin{array}{cc}c_{2} & s_{2} \\ -s_{2} & c_{2}\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c_{2} & -s_{2} \\ s_{2} & c_{2}\end{array}\right)=\left(\begin{array}{cc}-c_{2} & s_{2} \\ s_{2} & c_{2}\end{array}\right)\left(\begin{array}{cc}c_{2} & -s_{2} \\ s_{2} & c_{2}\end{array}\right)=\left(\begin{array}{cc}-c & s \\ s & c\end{array}\right)=F$,
which shows that F is reflection through the y axis rotated by $\theta / 2$.
(ii) The key thing is to focus on how we perform elimination under a single column of A, which we then repeat for each column. For Householder, this is done by a single Householder rotation. Here, since we are using 2×2 rotations, we have to eliminate under a column one number at a time: given 2-component vector $x=\binom{a}{b}$ into $J x=\binom{\|x\|_{2}}{0}$, where J is clockwise rotation by $\theta=\tan ^{-1}(b / a)[$ or, on a computer, atan2 $(b, a)]$. Then we just do this working "bottom-up" from the column: rotate the bottom two rows to introduce one zero, then the next two rows to introduce a second zero, etc.
(iii) The flops to compute the J matrix itself are asymptotically irrelevant, because once J is computed it is applied to many columns (all columns from the current one to the right). To multiply J by a single 2 -component vector requires 4 multiplications and 2 additions, or 6 flops. That is, 6 flops per row per column of the matrix. In contrast, Householder requires each column x to be rotated via $x=x-2 v\left(v^{*} x\right)$. If x has m components, $v^{*} x$ requires m multiplications and $m-1$ additions, multiplication by $2 v$ requires m more multiplications, and then subtraction from x requires m more additions, for $4 m-1$ flops overall. That is, asymptotically 4 flops per row per column. The 6 flops of Givens is 50% more than the 4 of Householder.

Problem 3: Schur fine ($\mathbf{1 0}+\mathbf{1 5}$ points)

(a) First, let us show that T is normal: substituting $A=Q T Q^{*}$ into $A A^{*}=A^{*} A$ yields $Q T Q^{*} Q T^{*} Q^{*}=$ $Q T^{*} Q^{*} Q T Q^{*}$ and hence (cancelling the $Q \mathrm{~s}$) $T T^{*}=T^{*} T$.

The $(1,1)$ entry of $T^{*} T$ is the squared L_{2} norm $\left(\|\cdot\|_{2}^{2}\right)$ of the first column of T, i.e. $\left|t_{1,1}\right|^{2}$ since T is upper triangular, and the $(1,1)$ entry of $T T^{*}$ is the squared L_{2} norm of the first row of T, i.e. $\sum_{i}\left|t_{1, i}\right|^{2}$. For these to be equal, we must obviously have $t_{1, i}=0$ for $i>1$, i.e. that the first row is diagonal.

We proceed by induction. Suppose that the first $j-1$ rows of T are diagonal, and we want to prove this of row j. The (j, j) entry of $T^{*} T$ is the squared norm of the j-th column, i.e. $\sum_{i \leq j}\left|t_{i, j}\right|^{2}$, but this is just $\left|t_{j, j}\right|^{2}$ since $t_{i, j}=0$ for $i<j$ by induction. The (j, j) entry of $T T^{*}$ is the squared norm of the j-th row, i.e. $\sum_{i \geq j}\left|t_{j, i}\right|^{2}$. For this to equal $\left|t_{j, j}\right|^{2}$, we must have $t_{j, i}=0$ for $i>j$, and hence the j-th row is diagonal. Q.E.D.
(b) The eigenvalues are the roots of $\operatorname{det}(T-\lambda I)=\prod_{i}\left(t_{i, i}-\lambda\right)=0$-since T is upper-triangular, the roots are obviously therefore $\lambda=t_{i, i}$ for $i=1, \ldots, m$. To get the eigenvector for a given $\lambda=t_{i, i}$, it suffices to compute the eigenvector x of T, since the corresponding eigenvector of A is $Q x$.
x satisfies

$$
0=\left(T-t_{i, i} I\right) x=\left(\begin{array}{ccc}
T_{1} & u & B \\
& 0 & v^{*} \\
& & T_{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\alpha \\
x_{2}
\end{array}\right)
$$

where we have broken up $T-t_{i, i} I$ into the first $i-1$ rows $\left(T_{1} u B\right)$, the i-th row (which has a zero on the diagonal), and the last $m-i$ rows T_{2}; similarly, we have broken up x into the first $i-1$ rows x_{1}, the i-th row α, and the last $m-i$ rows x_{2}. Here, $T_{1} \in \mathbb{C}^{(i-1) \times(i-1)}$ and $T_{2} \in \mathbb{C}^{(m-i) \times(m-i)}$ are upper-triangular, and are non-singular because by assumption there are no repeated eigenvalues and hence no other $t_{j, j}$ equals $t_{i, i} . u \in \mathbb{C}^{i-1}, v \in \mathbb{C}^{m-i}$, and $B \in \mathbb{C}^{(i-1) \times(m-i)}$ come from the upper triangle of T and can be anything. Taking the last $m-i$ rows of the above equation, we have $T_{2} x_{2}=0$, and hence $x_{2}=0$ since T_{2} is invertible. Furthermore, we can scale x arbitrarily, so we set $\alpha=1$. The first $i-1$ rows then give us the equation $T_{1} x_{1}+u=0$, which leads to an upper-triangular system $T_{1} x_{1}=-u$ that we can solve for x_{1}.

Now, let us count the number of operations. For the i-th eigenvalue $t_{i, i}$, to solve for x_{1} requires $\sim(i-1)^{2} \sim i^{2}$ flops to do backsubstitution on an $(i-1) \times(i-1)$ system $T_{1} x_{1}=-u$. Then to compute the eigenvector $Q x$ of A (exploiting the $m-i$ zeros in x) requires $\sim 2 m i$ flops. Adding these up for $i=1 \ldots m$, we obtain $\sum_{i=1}^{m} i^{2} \sim m^{3} / 3$, and $2 m \sum_{i=0}^{m-1} i \sim m^{3}$, and hence the overall cost is $\sim \frac{4}{3} m^{3}$ flops ($K=4 / 3$).

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ There is a slight wrinkle if there are repeated eigenvalues, e.g. $\sigma_{1}=\sigma_{2}$, because the real or imaginary parts of u_{1} and u_{2} might not be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues must span the same space, and hence we can find a real orthonormal basis with Gram-Schmidt or whatever.

