
THE PATTERN MATRIX METHOD

Abstract. In this paper we give a self-contained proof of Sherstov’s pattern

matrix method. This theorem combines two main ideas—an extension of the

discrepancy method known as the generalized discrepancy method and the
notion of dual polynomials—with the techniques of matrix norms, Fourier

analysis, and approximate degree. All together, this results in lower bounds on

the randomized communication complexity of a certain class of communication
problems, known as pattern matrices. These results extend to lower bounds

for quantum communication complexity with almost no addition work, though

we do not prove these results here.
Sherstov’s pattern matrix method is interesting not only because of the

elegance of its proof, but because the class of pattern matrices appears as
subproblems of several natural problems, allowing us to give lower bounds on

these communication problems as well. We give a short proof of Razborov’s

lower bound on the communication complexity of symmetric functions using
the pattern matrix method.
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1. Introduction

A communication complexity problem consists of a matrix F which takes values
in {−1, 1}, whose rows are indexed by X and whose columns are indexed by Y . We
study the communication complexity necessary to compute the entry Fx,y where
Alice knows the value of x ∈ X while Bob knows the value of y ∈ Y . Various
models of communication complexity exist such as the deterministic model, the
bounded-error randomized model, and the quantum model.

One method to prove lower bounds on the randomized communication complex-
ity of a function involves the discrepancy of the matrix F under some probability
distribution µ. Specifically,

1 ε
Rε( ) ≥ log

− 2
F

discµ(F )
.
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One useful property of the discrepancy method is that it gives good bounds even
for ε close to 1/2. However, this is also a downside since it means that for some
F , the discrepancy method cannot produce good lower bounds on Rε(F ) for any ε.
For example, DISJ has constant-cost randomized algorithms with error 1/2− 1/4n.
This implies that discµ(DISJ) is large, so the discrepancy method will not apply for
any values of ε.

We can modify this idea as follows. Suppose we have a matrix F that is well-
correlated with a matrix H such that H has small discrepancy. We know that
H is hard to compute by the discrepancy method, and this implies that F must
also be hard to compute. This idea, known as the generalized discrepancy method,
theoretically allows one to prove lower bounds on a larger a class of functions. The
difficulty, however, lies in finding the correct matrix H that is well-correlated with
F and has small discrepancy.

We can nicely solve this problem for a class of matrices known as pattern ma-
trices. For a single-variable function f : {0, 1}t → {−1, 1}, we associate it with a
matrix known as its pattern matrix. These pattern matrices have a very specific
form which preserves the Fourier-analytic properties of f . Now given a function f ,
there is a dual polynomial ψ that is well-correlated with it. The pattern matrix is
defined in such a way that this correlation implies that f and ψ have well-correlated
pattern matrices. Furthermore, the pattern matrix of ψ has a small discrepancy
when f has a property known as having large ε-approximate degree.

In this paper we provide a self-contained introduction to Sherstov’s pattern ma-
trix method, following [5]. We introduce the two main ideas of the proof—the
generalized discrepancy method and dual polynomials—as well as several useful
techniques—namely, matrix norms, Fourier analysis, and approximate degree. The
generalized discrepancy method (and thus the pattern matrix method as well) ap-
ply not only to randomized communication complexity, but to quantum complexity
as well with essentially no additional work. However, for simplicity, we do not in-
troduce quantum communication complexity in this paper.

The importance of the pattern matrix method lies in the fact that pattern ma-
trices appear as submatrices of many communication problems of interest. For
example, an important result of Razborov gives lower bounds on the quantum
communication complexity of symmetric functions [4]. This result may be easily
proven using the pattern matrix method, allowing us to obtain lower bounds on
the communication complexity of DISJ, among many other problems.

In Section 2 we prove the generalized discrepancy method. Then in Section 3
we introduce basic ideas of matrix analysis and use them to recast the generalized
discrepancy method in a simpler form. In Section 4 we introduce the basics of
Fourier analysis and use them to define the approximate degree of a function.
We then define dual polynomials and prove their existence. Then in Section 5 we
define pattern matrices and prove lower bounds on their communication complexity.
Finally, in Section 6 we give a simple proof of Razborov’s lower bounds on symmetric
functions.

2. Generalized Discrepancy

In this section we first review the ideas in the standard discrepancy method
without proof. We then introduce and prove the generalized discrepancy method.



THE PATTERN MATRIX METHOD 3

Definition 2.1. For a function f : X×Y → {−1, 1} and a probability distribution
µ over X×Y , define the discrepancy, discµ(f), to be the maximum over all S ⊆ X
and T ⊆ Y of

E(x,y)∼µ[f(x, y)1S(x)1T (y)].

Here 1S(x) is the indicator function that takes value 1 if x ∈ S and 0 otherwise and
similarly for 1T (y).

Definition 2.2. For a function f : X × Y
µ
→ {−1, 1}, a probability distribution

µ over X × Y , and an ε > 0, define Dε (f) to be the minimum cost over any
deterministic protocol P such that

E(x,y) µ[f(x, y)P (x, y)]∼ ≥ 1− 2ε.

In particular, this means that in expectation over all possible inputs, the protocol
P computes f correctly at least 1− ε of the time.

Proposition 2.3. For a function f : X × Y → {−1, 1}, a probability distribution
µ over X × Y , and some ε > 0, it holds that

R (f) ≥ Dµ
ε ε (f).

Theorem 2.4 (Discrepancy Method). For a function f : X × Y → {−1, 1}, a
probability distribution µ over X × Y , and any 0 < ε < 1/2, it holds that

Dµ 1 ε
ε (f) log

− 2≥ .
discµ(f)

The discrepancy method states that if a function f has small discrepancy under
some probability distribution µ, then f is hard to compute. We extend this method
to a larger class of functions. In particular, for any function f that is well-correlated
to some h under µ and h has small discrepancy under µ, then f is hard to compute.

Similar ideas were was used in both [4, 2]; we formalize it as in [5].

Theorem 2.5 (Generalized Discrepancy Method). For a function f : X × Y →
{−1, 1}, a probability distribution µ over X×Y , and a function h : X×Y → {−1, 1}
such that

E(x,y) µ[f(x, y)h(x, y)]∼ ≥ δ,
the following holds:

δ ε
Rε(f) log

− 2≥ .
discµ(h)

Proof. Suppose that P is a deterministic protocol with cost c = Dµ
ε (f) such that

P(x,y)∼µ[f(x, y) 6= P (x, y)] ≤ ε.

Applying the standard discrepancy method to h and P , we obtain

E
c ≥ (x,y)

log
∼µ[h(x, y)P (x, y)]

.
discµ(h)

Now since f and P differ with probability bounded by ε, we deduce that

E(x,y) µ[f(x, y)h(x, y)]
Rε(f) ≥ Dµ = c ≥ log

∼
ε (f)

− 2ε

discµ(h)
≥ log

δ − 2ε

discµ(h)
.

�
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3. Matrix Norms

In this section we introduce some basic notions from matrix analysis, and rephrase
Theorem 2.5 in terms of them.

Definition 3.1. For a matrix M , define its norm to be

‖M‖ = sup .
x ‖x

‖Mx
:

‖
‖=1

Definition 3.2. For two matrices M,N with rows labeled by X and columns by
Y , define 〈M,N〉 to be

(x,y

∑
Mx,yNx,y

)∈X×Y

We use the following simple proposition to bound the matrix norm.

Proposition 3.3. For an arbitrary matrix M ,

‖M‖2 ≤ ‖M>M‖.
Proof. Pick some x with ‖x‖ = 1 and ‖Mx‖ = ‖M‖. Then

‖M‖2 = ‖Mx‖2 = (Mx)>(Mx) = x>M>Mx ≤ ‖x‖‖M>Mx‖ ≤ ‖M>M‖.
�

Remark 3.4. The matrix norm has a number of deep properties, connecting it to
singular value decomposition and eigenvalue decomposition of matrices. In partic-
ular, the above inequality is actually an equality, though we do not use this or any
other of these facts in this paper.

The reason for introducing the matrix norm is because we can replace discrep-
ancy in the generalized discrepancy theorem with it. The following proposition
demonstrates this relation.

Proposition 3.5. For a function f : X×Y → {−1, 1} and a probability distribution
µ over X × Y , define the matrix Ψ by Ψx,y = f(x, y)µ(x, y). Then the following
relation holds:

discµ(f) ≤ ‖Ψ‖
√
|X||Y |.

Proof. By the definition of discrepancy, we have sets S ⊆ X and T ⊆ Y such that

E(x,y)∼µ[f(x, y)1S(x)1T (y)] = discµ(f).

We can rewrite this as∑
1S(x)f(x, y)µ(x, y)1T (y) = discµ(f).

(x,y)∈X×Y

Equivalently, this says 1>SΨ1T = discµ(f). Now we can bound this quantity as

discµ(f) = 1>SΨ1T ≤ ‖1S‖‖Ψ1T ‖ ≤ ‖1S‖‖Ψ‖‖1T ‖ = ‖Ψ‖
√
|S||T | ≤ ‖Ψ‖

√
|X||Y |.

�

Theorem 3.6 (Generalized Discrepancy Method, Matrix Form). For a function
f : X × Y → {−1, 1}, an∑ ε > 0, and any matrix Ψ with rows labeled by X and
columns by Y such that (x,y) X Y |Ψx,y| = 1, we have the following inequality∈ ×

, ε
Rε( ≥ log

〈F Ψ
f

〉 − 2
)

‖Ψ‖
√
|X||Y |

.
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Proof. For a function h : X × Y → {−1, 1} and a probability distribution µ on
X × Y , we can define a matrix Ψ by Ψx,y = h(x, y)µ(x, y). Furthermore, for any
matrix Ψ such that (x,y) Ψ∈X×Y | x,y| = 1, we can reverse this procedure. Simply

let µ(x, y) = |Ψx,y| and

∑
let h(x, y) be the sign of Ψ(x, y).

Now note that

E(x,y) µ[f(x, y)h(x, y)] =
∑

f(x, y)h(x, y)µ(x, y) =∼ 〈F,Ψ〉.
(x,y)∈X×Y

Furthermore, applying Proposition 3.5, the conclusion of Theorem 2.5 becomes

, ε
Rε f ≥ log

〈F Ψ
(

〉 − 2
)

discµ(h)
≥ log

〈F,Ψ〉 − 2ε

‖Ψ‖
√ .
|X||Y |

�

4. Approximate Degree and Dual Polynomials

In this section we first introduce the basics of Fourier analysis on the Boolean
hypercube and use this to define the approximate degree. Then we define dual
polynomials and show their existence using LP duality.

Definition 4.1. For S ⊆ [n], define the character χS : {0, 1}n → {−1, 1} by

χS(x) = (−1)
∑

i∈S xi .

Proposition 4.2. The characters obey the following two properties:

(1) Linearity: for x, y ∈ {0, 1}n,

χS(x⊕ y) = χS(x)χS(y).

(2) Orthogonality: for S 6= T ,∑
χS(x)χT (x) = 0.

x∈{0,1}n

Orthogonality of characters states that {χS}S [n] forms an orthogonal basis of
n

⊆
R{0,1} , the vector space of functions {0, 1}n → R. We define the Fourier transform
of f as the coordinates of f in this basis.

Definition 4.3. For a function f : {0, 1}n → R, define its Fourier transform to
ˆbe f : 2[n] → R defined by

f̂(S) = 2−n

x

∑
f(x)χS(x).

∈X

Proposition 4.4. For a function f : {0, 1}n → R, its Fourier transform satisfies

f(x) =
∑

f̂(S)χS(x).
S⊆[n]

Now we introduce the notion of approximate degree.

Definition 4.5. For a function f : {0, 1}n → R, define its degree to be the largest
ˆinteger d such that there exists S with f(S) 6= 0 and d = |S|.
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Definition 4.6. For a function f : {0, 1}n → R, define its ε-approximate degree,
degε(f), to be the smallest integer d such that there exists a function h : {0, 1}n → R
of degree d with

‖f − h‖∞ ≤ ε.
Here ‖φ‖ is defined to be the maximum absolute value that φ obtains.∞

We can decompose R{0,1}n into two orthogonal subspaces: the subspace V of all
degree d − 1 functions, spanned by {χS}|S|<d and its orthogonal complement W ,
spanned by {χS}|S|≥d.

Now if d = degε(f), this means that f is not well-approximated by any element
of V . Using duality, we show that this implies that we can find a function ψ ∈ W
which is well-correlated with f . First we prove a more general version of this idea,
originally proved in [1] in even more generality. We follow the presentation in [5]
which proves it only in the case that we use.

Theorem 4.7 ([1]). Let X be a finite set and Φ be an arbitrary subspace of RX ,
the vector space of functions X → R. For any function f ∈ RX ,

min
∈Φ
‖f − φ

φ
‖ = max .∞

ψ∈Φ :|∑ ψ(x)f(x)
⊥ ψ(x) 1x∈X |≤ x

∑
∈X

Proof. This follows by LP duality. Pick a basis φ1, . . . , φk for Φ. We construct two
linear programming

constraints
∣∣ ∑problems: the

f(x)− k
i=1 ciφi(x)

∣∣ first has variables (ε, c1, . . . , ck) subject to the∣ ∣ ≤ ε for each x ∈ X and objective to minimize ε.

The∑second has variables (ψ(x))x∈X subject to the constraints x∈X ψ(x) ≤ 1
and x X ψ(x)φ∑i(x) = 0 for 1 ≤ i ≤ k and objective to maximize x (∈

=

∣∑
∈X ψ x)

k

∣
f(x).

Setting φ i=1 ciφi, we see that solutions to the first problem

∣
corresp

∣
ond

exactly to pairs (φ, ε) where φ ∈ Φ and

∑
‖f − φ‖∞ ≤ ε. Similarly, solutions to

the∣∣∑ second p∣∣ roblem correspond exactly to functions ψ such that ψ ∈ Φ⊥ and

x X ψ(x) ≤ 1. It is not hard to check that these two programs are dual to∈
each other, so we conclude that optima of these two programs are equal, which is
exactly the desired result.1 �

Corollary 4.8. For f : {0, 1}n R, let d = degε(f). Then there exists a dual
polynomial, ψ : {0, 1}n

→
→ R, such that

• ψ̂(S) = 0 for |S| < d,
•
∑∣∣∑x∈{0,1 ψ(x)f(x) > ε,}n

• ∣ x 0,1 n ψ(x)∈{ }

∣∣∣ = 1.

Proof. Let Φ be the subspace of R{0,1}n spanned by χS for |S| < d. By orthogo-

nality of characters, we know that Φ⊥ ˆconsists of all ψ such that ψ(S) = 0 for all
|S| < d.

Now since d = degε(f), we have that for any φ ∈ Φ, i.e., φ of degree less than d,
we must have ‖f − φ‖ > ε. By Theorem 4.7, this implies the existence of some∞

1Note that the programs used in this proof are not exactly in the standard form of a linear

program. Namely, we do not require that the variables are positive and we use absolute values in

our linear constraints. However, there are standard techniques to rectify both of these problems—
by replacing each equation, |a| ≤ b, by a pair of equations, a ≤ b and −a ≤ b, and each variable,
x, by a pair of variables, x+ and x−, corresponding to the positive and negative parts of x.
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ψ ∈ Φ⊥ such that
∣∣∑

x )∈{0,1}n ψ(x
∣∣∣ ∣ ≤ 1 and

x∈{

∑
ψ(x)f(x) = ‖f − φ(x)‖ > ε.∞

0,1}n

This implies the desired result, since scaling ψ preserves the first two properties

while increasing
∣∣∣∑x∈{0,1}n ψ(x)

∣∣
to 1. �

5. P

∣
attern Matrices

Given a function f : {0, 1}t → {−1, 1}, its pattern matrix represents the following
communication problem. Alice is given a vector x ∈ {0, 1}n. Bob is given a subset
V ⊆ [n] of size t and a vector w ∈ {0, 1}t. They want to find the vector x|V which
consists of the t components of x specified by V and then compute f(x|V ⊕ w).

Definition 5.1. For a function f : {0, 1}t → R and n a multiple of t, define the
(n, t, f)-pattern matrix A(n,t,f) as follows. The rows are indexed by {0, 1}n while
the columns are indexed by [n/t]t × {0, 1}t. For x

t
∈ {0, 1}n and V ∈ [n/t]t, let

x|V ∈ {0, 1} be the vector whose ith component is given by x(n/t)(i−1)+Vi
. Then

let the entry in position (x, (V,w)) of the pattern matrix be given by f(x|V ⊕ w).

To apply the generalized discrepancy method to pattern matrices, we first need
to compute the matrix norm of pattern matrices. The following lemma makes the
calculation feasible.

Lemma 5.2. For two n × m matrices A,B, if AB> = 0 and A>B = 0, then
‖A+B‖2 ≤ max{‖A>A‖, ‖B>B‖}.

Proof. First note that ‖A+B‖2 ≤ ‖(A+B)>(A+B)‖ = ‖A>A+B>B‖. The first
equality follows by Proposition 3.3 while the second follows since A>B and B>A
are both 0. Now we claim ‖A>A+B>B

m
‖ ≤ max ‖A>A‖, ‖B>B‖ .

To see this, let U ⊆ R be the span of the rows of A and V ⊆ Rm be the span
of the rows of B. Since AB> = 0, the subspaces U

{
, V are orthogonal.

}
Therefore we

can write Rm = U ⊕ V ⊕W where U, V,W are all orthogonal. Now for any vector
x ∈ Rm, we can uniquely write x = u+ v + w where u ∈ U , v ∈ V , w ∈W .

In particular, pick x with ‖x‖ = 1 and such that ‖(A>A+ B>B)x‖ = ‖A>A+
B>B‖. Then

‖A>A+B>B‖2 = ‖(A>A+B>B)x‖2

= ‖A>Au+B>Bv‖2

= ‖A>Au‖2 + ‖B>Bv‖2

≤ ‖A>A‖2‖u‖2 + ‖B>B‖2‖v‖2

≤ max
{
‖A>A‖ 2

, ‖B>B‖ (‖u‖2 + ‖v‖2)

≤ max
{
‖A>A‖, ‖ 2

B>B‖

}
‖x‖2.

The second line follows since U, V,W are mutually orthogonal

}
subspaces. The third

line follows by the Pythagorean theorem since A>B implies that imA and imB are
orthogonal spaces. �
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Proposition 5.3. For a function f : {0, 1}t → R and n a multiple of t, the matrix
norm ‖A(n,t,f)‖ is bounded above by

max
S⊆[n]

√
ˆ2n+t(n/t)t−|S||f(S)|.

ˆProof. For S ⊆ [t], we use AS to refer to A(n,t,χS). Then since f =
∑
S [t] f(S)χ⊆ S ,

we conclude that

A(n,t,f) =
S

∑
f̂(S)AS .

⊆[t]

ˆWe show that ‖A(n,t,f)‖2 ≤ maxS [n] f(S)2
⊆ ‖A>SAS‖ and ‖A>SAS‖ = 2n+t(n/t)t.

The former follows from Lemma 5.2 once we compute A>SAT and ASA
>
T while the

latter follows from a similar calculation.

[ASA
>
T ]x,y =

∑
χS(x|V ⊕ w)χT (y|V ⊕ w)

V ∈[n/t]t

w∈{0,1}t

=
∑

χS(x|V )χT (y|V ) S

]

∑
χ (w)χT (w)

V ∈[n/t t w∈{0,1}t

= 0

Similarly, we see

[A>SAT ](V,w),(V ′,w′) =
∑

χS(x|V
n

⊕ w)χT (x|V ′ ⊕ w′)
x∈{0,1}

= χS(w)χT (w′)
∑

χS(x|V )χT (x
x∈{0,1}n

|V ′)

Define SV ⊆ [n] by SV = {(n/t)(i − 1) + Vi : i ∈ S}. Then χS(x|V ) = χSV
(x).

Therefore, by orthogonality of characters, we have [A>SAT ](V,w),(V ′,w′) = 0 for S 6=
T , since we have SV = TV ′ .

Furthermore, for S = T , we see that [A>SA
n

S ](V,w),(V ′,w′) = 2 χS(w)χS(w′) for

SV = SV ′ and 0 otherwise. Now note that for each V , there are (n/t)t−|S| choices
of V ′ such that SV = SV ′ . This implies that A>SAS is a matrix made of blocks

of size 2t(n/t)t−|S|√. Each of these blocks is a rank 1 matrix where each row is a

vector of length 2n 2t(n/t)t−|S|. This implies that ‖AS>AS‖ = 2n+t(n/t)t−|S|, as
desired. �

Theorem 5.4 (Pattern Matrix Method). For a function f : {0, 1}t → {−1, 1}, n
a multiple of t, and ε > 2δ, the pattern matrix A(n,t,f) satisfies the following:

1
Rδ(A(n,t,f)) ≥ degε(f) log(n/t) + log(ε

2
− 2δ).

Proof. Set d = degε(f) and let ψ be the dual polynomial to f . By Corollary 4.8,
this satisfies the following:

ˆi. ψ∑(S) = 0 for |S| < d,
ii. ∣ x 0,1 t ψ(x)f(x) > ε,∈{ }

iii.
∣∣∑x∈{0,1}t ψ(x)

∣∣∣ = 1.
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We wish to apply the generalized discrepancy method to the pattern matrix of
ψ under the uniform distribution. Namely let Ψ = (n/t)−t2−nA(n,t,ψ). Simply
combining the above properties of ψ with the definition dual polynomials, we bound
the desired quantities. By iii.,

∑
|Ψx,(V,w)| = (n/t)−t2−n

∑  ∑
ψ(x w

n

⊕
x∈{0,1} x∈{0,1}n

|V )
w


∈{0,1 t

(V,w)∈[n/t]t×{0,1}t
}

V ∈[n/t]t


= (n/t)−t2−n

x∈{

∑
1

0,1}n
V ∈[n/t]t

= 1.

By ii.,

〈A(n,t,f),Ψ〉 = (n/t)−t2−n f(x|V ⊕ w)ψ(x|V ⊕ w)
x 0,1}n


∈{

∑ 
w

∑
0,1}t


V ∈[n/t]t

∈{


> (n/t)−t2−n

x∈{

∑
ε

0,1}n
V ∈[n/t]t

= ε.

By i. and Proposition 5.3,

‖Ψ‖ ≤ (n/t)−t2−n
√

| ˆ2n+t(n/t)t−d max ψ(S)
S⊆[n]

|.

ˆFurthermore, by the triangle inequality applied to the definition of ψ(S) and iii, we
see

|ψ̂(S)| ≤ 2−t
∑

|ψ(x)| = 2−t.
x∈{0,1}t

Therefore we conclude that ‖Ψ‖ ≤
( 1/2
2n+t(n/t)t+d

)−
, so by Theorem 3.6

ε δ
Rε(A(n,t,f) ≥ log

− 2
)

‖Ψ‖
√

2n(n/t)t2t

≥ 1
degε(f) log(n/t) + log(ε

2
− 2δ).

�

6. Application: Communication Complexity of Symmetric Functions

We give an alternative proof of a result of Razborov using the pattern matrix
method.

Definition 6.1. A predicate is a function D : {0, 1, . . . , n} → {−1, 1
n
}. Its asso-

ciated communication problem ∑is the symmetric function fD : {0, 1} × {0, 1
n

}n →
{−1, 1} given by fD(x, y) = D ( i=1 xiyi).

Define 0 ≤ l0(D) ≤ bn/2c and 0 ≤ l1(D) ≤ dn/2e to be the smallest integers
such that D is constant on the range {l0(D), l0(D) + 1, . . . , n− l1(D)}.
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Razborov’s lower bound on the communication complexity of symmetric func-
tions states the following.

Theorem 6.2 ([4]). Given a predicate D : {0, 1}n → {−1, 1},

R1/3(fD) ≥ Ω
(√

nl0(D) + l1(D) .

Remark 6.3. Razborov actually proved the above result

)
for quantum communi-

cation complexity. The proof we give also proves this result once one extends the
generalized discrepancy method (and thus the pattern matrix method as well) from
randomized to quantum communication complexity.

We only prove half of this result here. The other half follows by similar tech-
niques, though it has more details to check. First note that the approximate degree
of fD is a well-studied problem. Namely we have the following theorem.

Theorem 6.4 ([3]). Given a predicate D : {0, 1}n → {−1, 1},

deg1/3(fD) = Ω
(√

nl0(D) +
√
nl1(D) .

Proposition 6.5. Given a predicate D : 0

)
{ , . . . , n} → {−1, 1}, if there exists l ≤

n/8 with D(l) 6= D(l − 1), then

R1/3(fD) ≥ Ω(
√
nl).

Proof. It suffices to prove this result ∑for R1/7(fD). Let f : {0, 1
n/4

}bn/4c → {0, 1}
be the function given by f(x) = D(

b c
i=1 xi) and let F refer to the pattern

matrix A2 n/4 , n/4 ,f . Applying Theorem 5.4 with ε = 1/3 and δ = 1/7, web c b c

see by Theorem 6.4 that D1/7(F ) = Ω(
√
nl). All that remains is to show that

D1/7(fD) ≥ D1/7(F ). To prove this, we show that F is a submatrix of fD.
n/4

A row of F corresponds is given by some x = ((xi, x
′
i))
b c
i=1 while a column of

n/4
F is given by some y = ((yi, wi))

b c
i=1 . Then

Fx,y = D

b∑n/4c(xi, x′i)
i=1

|yi ⊕ wi


.

Here we use (xi, x
′
i)|yi = xi if yi = 0 and xi

′ if yi = 1.


Below we write out the

matrix of [(xi, x
′
i)|yi ⊕ wi]. 

0 1 0 10 1 1 0


To show that F is a submatrix of

1 0 0 1
1 0 1 0


fD, we define a pair of maps ((xi, x

′
i

n/
))
b 4c
i=1 →

((xi,x
′
i,x
′′
i

n/
,x′′′i ))

b 4c n/4 n/4
i=1 and ((yi, wi))

b c
i=1 → ((yi,yi

′ ,yi
′′,yi
′′′))
b c
i=1 defined below.

(xi, x
′
i) (xi,x

′
i,x
′′
i ,x
′′′
i )

00 1000
01 0100
10 0010
11

(yi, wi)

0001

(yi,y
′
i,y
′′
i ,y
′′′
i )

00 0011
01 1100
10 0101
11 1010
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It is easy to check that under this pair of maps, a pair ((xi, x
′
i), (yi, wi)) is sent

to a pair (xi,x
′
i,x
′′
i ,x
′′′
i ), (yi,yi

′ ,yi
′′,yi
′′′) such that

(xi, x
′
i)|yi ⊕ wi = xiyi + x′iyi

′ + x′′i yi
′′ + x′′′i yi

′′′.

This implies that the map from F to fD preserves the matrix entries, as desired. �

Example 6.6. DISJ is the communication{ problem fD associated to the predicate

1 l = 0,
D(l) = .

0 otherwise.

Then D(1) 6= D(0), so applying the above proposition with l = 1, we conclude

R1/3(DISJ) ≥ Ω(
√
n).

Remark 6.7. In this example, the bounds we obtain are tight in the quantum case,
but not in the randomized case. This is one failing of the pattern matrix method—it
cannot prove gaps between quantum and randomized computation.
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