#Problem_14_9_2.r
x=c(.34,1.38,-.64,.68,1.40,-.88,-.30, -1.18, .50, -1.75)
y=c(.27,1.34,-.53,.35,1.28,-.98,0.72,-.81,.64,-1.59)
# (a) Fit line y=a + bx using lm() in r
plot(x,y)
lmfit1<-lm(y~x)
summary(lmfit1)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34954 -0.16556 -0.06363 0.08067 0.87278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1081 0.1156 0.935 0.377
## x 0.8697 0.1133 7.677 5.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3654 on 8 degrees of freedom
## Multiple R-squared: 0.8805, Adjusted R-squared: 0.8655
## F-statistic: 58.94 on 1 and 8 DF, p-value: 5.867e-05
abline(lmfit1,col='green')
lmfit1$coefficients
## (Intercept) x
## 0.1081372 0.8697151
# (b) Fit line x=c+dy using lm() in r
lmfit2<-lm(x~y)
summary(lmfit2)
##
## Call:
## lm(formula = x ~ y)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.91406 -0.03117 0.07484 0.20963 0.44052
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1149 0.1250 -0.919 0.385
## y 1.0124 0.1319 7.677 5.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3942 on 8 degrees of freedom
## Multiple R-squared: 0.8805, Adjusted R-squared: 0.8655
## F-statistic: 58.94 on 1 and 8 DF, p-value: 5.867e-05
lmfit2$coefficients
## (Intercept) y
## -0.1148545 1.0123846
# For x = b1 + b2y
# we get the y vs x line as
# y=-(b1/b2) + (1/b2)x
abline(a=-lmfit2$coefficients[1]/lmfit2$coefficients[2],
b=(1/lmfit2$coefficients[2]), col="red")
title(main="Y=a + bx (Green) X=c+dy (Red)")
abline(h=mean(y)); abline(v=mean(x))
abline(h=mean(y));abline(v=mean(x)) # Plot horizontal/vertical lines at y/x means

# (c). THe lines are not the same. The regression of y on x regresses toward the mean
# of y (less steep slope) and the regression of x on y regresses toward the mean of
# x (which is less steep for x vs y, but more steep for y vs x)