MIT OpenCourseWare
http://ocw.mit.edu

18.705 Commutative Algebra

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

* Problem SLK 1 (The '*' means that this problem is to be presented in class.) Let B be a ring, I an ideal, and $A:=B[y]$ the polynomial ring. Construct an isomorphism from $A / I A$ onto $(B / I)[y]$.

Problem SLK 2 Let B be a UFD, and $A:=B[y]$ the polynomial ring. Let f be a polynomial that has a term $b y^{i}$ with $i>0$ such that b is not divisible by some prime element p in B. Prove that the ideal (f) is not maximal.

Problem SLK 3 Let L, M, N be A-modules, and $\alpha: L \rightarrow M, \beta: M \rightarrow N, \sigma: N \rightarrow M, \rho: M \rightarrow$ L homomorphisms. Prove that $M=L \oplus N$ and $\alpha=i_{L}, \beta=\pi_{N}, \sigma=i_{N}, \rho=\pi_{L}$ if and only and if and only if the following relations hold: $\beta \alpha=0, \beta \sigma=1, \rho \sigma=0, \rho \alpha=1$, and $\alpha \rho+\sigma \beta=1$.

Problem SLK 4 Let k be a field, and K an algebraically closed field containing k. (Recall that K contains a copy of every algebraic extension of k.) Let A be the polynomial ring in n variables over k, and f, f_{1}, \ldots, f_{r} polynomials in A. Suppose that, for any n-tuple $a:=\left(a_{1}, \ldots, a_{n}\right)$ of elements a_{i} of K such that $f_{1}(a)=0, \ldots, f_{r}(a)=0$, also $f(a)=0$. Prove that there are an integer N and polynomials g_{1}, \ldots, g_{r} in A such that $f^{N}=g_{1} f_{1}+\cdots+g_{r} f_{r}$.

Problem SLK 5 Let A be a ring, and P a module. Then P is called projective if the functor $N \mapsto \operatorname{Hom}(P, N)$ is exact. (1) Prove that P is projective if and only if, given any surjection $\psi: M \rightarrow N$, every map $\nu: P \rightarrow N$ lifts to a map $\mu: P \rightarrow M$; that is, $\psi \mu=\nu$. (2) Prove that P is projective if and only if every short exact sequence $0 \rightarrow L \xrightarrow{\phi} M \xrightarrow{\psi} P \rightarrow 0$ is split. (3) Prove that P is projective if and only if P is a direct summand of a free module F; that is, $F=P \oplus L$ for some L. (4) Assume that A is local and that P is finitely generated; then prove that P is projective if and only if P is free.

Problem SLK 6 Let A be a Noetherian ring, and P a finitely generated A-module. Prove that the following three conditions are equivalent: (1) P is projective; (2) $P_{\mathfrak{p}}$ is free over $A_{\mathfrak{p}}$ for every prime ideal \mathfrak{p}; and (3) $P_{\mathfrak{m}}$ is free over $A_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m}.

Problem SLK 7 Let A be a ring, M an arbitrary A-module, and I the annihilator of M. Prove that the support $\operatorname{Supp}(M)$ is always contained in the set $\mathbb{V}(I)$ of primes containing I.

Problem SLK 8 Let \mathbb{Z} be the ring of integers, \mathbb{Q} the rational numbers, and set $M:=\mathbb{Q} / \mathbb{Z}$. Find the support $\operatorname{Supp}(M)$, and show that it's not Zariski closed (that is, it does not consist of all the primes containing any ideal).

Problem SLK 9 Let A be a Noetherian ring, M a finitely generated module. Prove that the intersection of all the associated primes of M is equal to the radical of the annihilator Ann (M).

* Problem SLK 10 Let A be a Noetherian ring, I and J ideals. Assume $J A_{P}$ is contained in $I A_{P}$ for all associated primes P of A / I. Prove J is contained in I.
* Problem SLK 11 Let A be a Noetherian ring, $x \in A$. Assume x lies in no associated prime of $A /$ I. Prove the intersection of the ideals (x) and I is equal to their product $(x) I$.

Problem SLK 12 Let A be a Noetherian ring, M a finitely generated module, Q a submodule. Set $P:=\sqrt{\operatorname{Ann}(M / Q)}$. Prove the equivalence of these two conditions:
(1) Q is P-primary; that is, $\operatorname{Ass}(M / Q)=\{P\}$; and
(2) every zero divisor on M / Q is nilpotent on M / Q; in other words, given an $a \in A$ for which there exists an $x \in M-Q$ such that $a x \in Q$, necessarily $a \in P$.

Problem SLK 13 Let A be a domain, K its fraction field. Show that A is a valuation ring if and only if, given any two ideals I and J, either I lies in J or J lies in I.

* Problem SLK 14 Let v be a valuation of a field K, and x_{1}, \ldots, x_{n} nonzero elements of K with $n>1$. Show that (1) if $v\left(x_{1}\right)$ and $v\left(x_{2}\right)$ are distinct, then $v\left(x_{1}+x_{2}\right)=\min \left\{v\left(x_{1}\right), v\left(x_{2}\right)\right\}$ and that (2) if $x_{1}+\cdots+x_{n}=0$, then $v\left(x_{i}\right)=v\left(x_{j}\right)$ for two distinct indices i and j.

Problem SLK 15 Prove that a valuation ring is normal.

Problem SLK 16 Let A be a Dedekind domain. Suppose A is semilocal (that is, A has only finitely many maximal ideals). Prove A is a PID.

Problem SLK 17 Let A be a Noetherian ring, and suppose A_{P} is a domain for every prime P. Prove the following four statements:
(1) Every associated prime of A is minimal.
(2) The ring A is reduced.
(3) The minimal primes of A are pairwise coprime.
(4) The ring A is equal to the product of its quotients A / P as P ranges over the set of all minimal primes.

Problem SLK 18 Let A be a UFD, and M an invertible fractional ideal. Prove M is principal.

* Problem SLK 19 Let A be a domain, K its fraction field, L a finite extension field, and B the integral closure of A in L. Show that L is the fraction field of B. Show that, in fact, every element of L can be expressed as a fraction b / a where b is in B and a is in A.

Problem SLK 20 Let $A \subset B$ be domains, and K, L their fraction fields. Assume that B is a finitely generated A-algebra, and that L is a finite dimensional K-vector space. Prove that there exists an $f \in A$ such that B_{f} is a finite generated A_{f}-module.

Problem SLK 21 Let A be a ring, P a prime ideal, and B an integral extension ring. Suppose B has just one prime Q over P. Show (a) that $Q B_{P}$ is the only maximal ideal of B_{P}, (b) that $B_{Q}=B_{P}$, and (c) that B_{Q} is integral over A_{P}.

Problem SLK 22 Let A be a ring, P a prime ideal, B an integral extension ring. Suppose B is a domain, and has at least two distinct primes Q and Q^{\prime} over P. Show B_{Q} is not integral over A_{P}. Show, in fact, that if x lies in Q^{\prime}, but not in Q, then $1 / x \in B_{Q}$ is not integral over A_{P}.

Problem SLK 23 Let k be a field, and x an indeterminate. Set $B:=k[x]$, and set $y:=x^{2}$ and $A:=k[y]$. Set $P:=(y-1) A$ and $Q:=(x-1) B$. Is B_{Q} is integral over A_{P} ? Explain.

* Problem SLK 24 Let A be a ring (possibly not Noetherian), P a prime ideal, and B a modulefinite A-algebra. Show that B has only finitely many primes Q over P. [Hint: reduce to the case that A is a field by localizing at P and passing to the residue rings.]

Problem SLK 25 Let k be a field, A a finitely generated k-algebra, and f a nonzero element of A. Assume A is a domain. Prove that A and its localization A_{f} have the same dimension.

Problem SLK 26 Let A be a DVR, and f a uniformizing parameter. Show that A and its localization A_{f} do NOT have the same dimension.

Problem SLK 27 Let L / K be an algebraic field extension. Let X_{1}, \ldots, X_{n} be indeterminates, and A and B the corresponding polynomial rings over K and L. (1) Let Q be a prime of B, and P its contraction in A. Show $\operatorname{ht}(P)=\operatorname{ht}(Q)$. (2) Let f and g be two polynomials in A with no common factors in A. Show f and g have no common factors in B.

* Problem SLK 28 Let k be a field, and A a finitely generated k-algebra. Prove that A is Artin if and only if A is a finite-dimensional k-vector space.

Problem SLK 29 Let A be an r-dimensional finitely generated domain over a field, and x an element that's neither 0 nor a unit. Set $B:=A /(x)$. Prove that B is equidimensional of dimension $r-1$ (that is, $\operatorname{dim}(B / Q)=r-1$ for every minimal prime Q); prove that, in fact, $r-1$ is the length of any maximal chain of primes in B.

[^0]Problem SLK 31 Let A, \mathbf{m} be a Noetherian local ring of dimension r, and $B:=A / I$ a factor ring of dimension s. Set $t:=r-s$. Prove that the following three conditions are equivalent: (1) A is regular, and I is generated by t members of a regular sop; (2) B is regular, and I is generated by t elements; and (3) A and B are regular.

Problem SLK 32 (a) Let A be a Noetherian local ring, and P a principal prime ideal of height 1. Prove that A is a domain.
(b) Let k be a field, and x an indeterminate. Show that the product ring $k[x] \times k[x]$ is not a domain, yet it contains a principal prime ideal P of height 1 .

Problem SLK 33 (a) Let A be a ring, S a multiplicative set, and M an A-module. Prove that $S^{-1} M=S^{-1} A \otimes M$ by showing that the two natural maps $M \rightarrow S^{-1} M$ and $M \rightarrow S^{-1} A \otimes M$ enjoy the same universal property.
(b) Show that $(1,1, \ldots)$ is nonzero in $\mathbb{Q} \otimes\left(\prod_{i} \mathbb{Z} /(i)\right)$.

* Problem SLK 34 Let A be a ring, I and J ideals, and M an A-module.
(a) Use the right exactness of tensor product to show that $(A / I) \otimes M=M / I M$.
(b) Show that $(A / I) \otimes(A / J)=A /(I+J)$.
(c) Assume that A is a local ring with residue field k, and that M is finitely generated. Show that $M=0$ if and only if $M \otimes k=0$.
(d) Let \mathbb{R} be the real numbers, \mathbb{C} the complex numbers, and X an indeterminate. Using the formula $\mathbb{C}=\mathbb{R}[X] /\left(1+X^{2}\right)$, express $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ as a product of Artin local rings, identifying the factors.

Problem SLK 35: Let A be an arbitary ring, M and $N A$-modules, and k a field.
(a) Assume M and N are free of ranks m and n. Prove that $M \otimes N$ is free of rank $m n$.
(b) Given nonzero k-vector spaces V and W, show that $V \otimes W$ is also nonzero.
(c) Assume A is local, and M and N are finitely generated. Prove that $M \otimes N=0$ if only only if $M=0$ or $N=0$.
(d) Assume M and N are finitely generated. $\operatorname{Prove} \operatorname{Supp}(M \otimes N)=\operatorname{Supp}(M) \cap \operatorname{Supp}(N)$.

[^0]: * Problem SLK 30 Let A, \mathbf{m} be a Noetherian local ring. Assume that \mathbf{m} is generated by an A-sequence x_{1}, \ldots, x_{r}. Prove that A is regular of dimension r.

