MIT OpenCourseWare
http://ocw.mit.edu

18.705 Commutative Algebra

 Fall 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Theorem (Refined Noether Normalization Lemma). Let k be a field, R a finitely generated k-algebra, and $\mathfrak{a}_{1} \subset \cdots \subset \mathfrak{a}_{r} \varsubsetneqq R$ a chain of proper ideals. Then there exist algebraically independent elements t_{1}, \ldots, t_{n} of R such that
(a) R is module finite over $k\left[t_{1}, \ldots t_{n}\right]$;
(b) for $1 \leq i \leq r$, there is an $h(i)$ such that $\mathfrak{a}_{i} \cap k\left[t_{1}, \ldots t_{n}\right]=\left(t_{1}, \ldots, t_{h(i)}\right)$.

Proof (Cf. [Bourbaki, "Commutative Algebra," Thm. 1, p. 344].) By hypothesis, $R=S / \mathfrak{b}_{0}$ where S is a polynomial ring $k\left[T_{1}, \ldots, T_{m}\right]$. Say $\mathfrak{a}_{i}=\mathfrak{b}_{i} / \mathfrak{b}_{0}$. Then it suffices to prove the assertion for S and $\mathfrak{b}_{0} \subset \mathfrak{b}_{1} \subset \cdots \subset \mathfrak{b}_{r}$. Thus we may assume R is the polynomial algebra $k\left[T_{1}, \ldots, T_{m}\right]$. The proof proceeds by induction on r.

First, suppose $r=1$ and \mathfrak{a}_{1} is a principal ideal generated by a nonzero element t_{1}. Then $t_{1} \notin k$ because $\mathfrak{a}_{1} \neq R$. Write $t_{1}=\sum a_{(j)} T_{1}^{j_{1}} \cdots T_{m}^{j_{m}}$ where (j) denotes $\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ and $a_{(j)} \in k$ is nonzero. We are going to choose positive integers s_{i} for $2 \leq i \leq m$ such that T_{1} is integral over $R^{\prime}:=k\left[t_{1}, t_{2}, \ldots, t_{m}\right]$ where $t_{i}:=T_{i}-T_{1}^{s_{i}}$. Then clearly, (a) follows.

Note that T_{1} satisfies the equation,

$$
t_{1}-\sum a_{(j)} T_{1}^{j_{1}}\left(t_{2}+T_{1}^{s_{2}}\right)^{j_{2}} \cdots\left(t_{m}+T_{1}^{s_{m}}\right)^{j_{m}}=0
$$

Set $e(j):=j_{1}+s_{2} j_{2}+\cdots+s_{m} j_{m}$. Take $s_{i}:=\ell^{i}$ where ℓ is an integer greater than all of the j_{i}. Then the $e(j)$ are distinct. Let $e\left(j^{\prime}\right)$ be largest $e(j)$. Then the above equation can be written in the form

$$
a_{\left(j^{\prime}\right)} T_{1}^{e\left(j^{\prime}\right)}+\sum_{v<e\left(j^{\prime}\right)} Q_{v} T_{1}^{v}=0
$$

where $Q_{v} \in R^{\prime}$, and hence, T_{1} is integral over R^{\prime}. Thus (a) holds.
By the theory of transcendence bases [Artin, "Algebra," Ch. 13, §8, pp. 525527], the elements t_{1}, \ldots, t_{m} are algebraically independent. Let $x \in \mathfrak{a}_{1} \cap R^{\prime}$. Then $x=t_{1} x^{\prime}$ where $x^{\prime} \in R \cap k\left(t_{1}, \ldots, t_{m}\right)$. Furthermore, $R \cap k\left(t_{1}, \ldots t_{m}\right)=R^{\prime}$ because R^{\prime} is normal as it is a polynomial algebra. Hence $\mathfrak{a}_{1} \cap R^{\prime}=t_{1} R^{\prime}$. Thus (b) holds in case $r=1$ and \mathfrak{a}_{1} is principal.

Second, suppose $r=1$ and \mathfrak{a}_{1} is arbitrary. If $\mathfrak{a}_{1}=0$, then we may take $t_{i}:=T_{i}$. So assume $\mathfrak{a}_{1} \neq 0$. The proof proceeds by induction on m. The case $m=1$ follows from the first case (but is simpler) because $k\left[T_{1}\right]$ is a principal ring. Let $t_{1} \in \mathfrak{a}_{1}$ be nonzero. By the first case, there exist elements u_{2}, \ldots, u_{m} such that $t_{1}, u_{2}, \ldots u_{m}$ are algebraically independent and satisfy (a) and (b) with respect to R and $t_{1} R$. By induction, there exist elements t_{2}, \ldots, t_{m} satisfying (a) and (b) with respect to $k\left[u_{2}, \ldots, u_{m}\right]$ and $\mathfrak{a}_{1} \cap k\left[u_{2}, \ldots, u_{m}\right]$.

Set $R^{\prime}:=k\left[t_{1}, \ldots, t_{m}\right]$. Since R is module finite over $k\left[t_{1}, u_{2}, \ldots, u_{m}\right]$ and the latter is module finite over R^{\prime}, the former is module finite over R^{\prime}. Hence (a) holds, and t_{1}, \ldots, t_{m} are algebraically independent. Moreover, by hypothesis,

$$
\mathfrak{a}_{1} \cap k\left[t_{2}, \ldots, t_{m}\right]=\left(t_{2}, \ldots, t_{h}\right)
$$

for some $h \leq m$. So $\mathfrak{a}_{1} \cap k\left[t_{1}, \ldots, t_{m}\right] \supset\left(t_{1}, \ldots, t_{h}\right)$.
Conversely, given $x \in \mathfrak{a}_{1} \cap R^{\prime}$, write $x=\sum_{i=0}^{d} Q_{i} t_{1}^{i}$ where $Q_{i} \in k\left[t_{2}, \ldots, t_{m}\right]$. Since $t_{1} \in \mathfrak{a}_{1}$, we have $Q_{0} \in \mathfrak{a}_{1} \cap k\left[t_{2}, \ldots, t_{m}\right]$, so $Q_{(0)} \in\left(t_{2}, \ldots, t_{h}\right)$. Hence $x \in\left(t_{1}, \ldots, t_{h}\right)$. Thus $\mathfrak{a}_{1} \cap R^{\prime}=\left(t_{1}, \ldots, t_{h}\right)$. Thus (b) holds for $r=1$.

Finally, suppose the theorem holds for $r-1$. Let u_{1}, \ldots, u_{m} be algebraically independent elements of R satisfying (a) and (b) for the sequence $\mathfrak{a}_{1} \subset \cdots \subset \mathfrak{a}_{r-1}$, and set $s:=h(r-1)$. By the second case, there exist elements t_{s+1}, \ldots, t_{m} satisfying (a) and (b) for $k\left[u_{s+1}, \ldots, u_{m}\right]$ and $\mathfrak{a}_{r} \cap k\left[u_{s+1}, \ldots, u_{m}\right]$. Then

$$
\mathfrak{a}_{r} \cap k\left[t_{s+1}, \ldots, t_{m}\right]=\left(t_{s+1}, \ldots, t_{h(r)}\right)
$$

for some $h(r)$. Set $t_{i}:=u_{i}$ for $1 \leq i \leq s$. Set $R^{\prime}:=k\left[t_{1}, \ldots, t_{m}\right]$. Then R is module finite over $k\left[u_{1}, \ldots, u_{m}\right]$ by hypothesis, and $k\left[u_{1}, \ldots, u_{m}\right]$ is module finite over R^{\prime} by hypothesis. Hence R is module finite over R^{\prime}. Thus (a) holds, and t_{1}, \ldots, t_{m} are algebraically independent over k.

Fix i with $1 \leq i \leq r$. Set $\ell:=h(i)$. Then $t_{1}, \ldots, t_{\ell} \in \mathfrak{a}_{i}$. Given $x \in \mathfrak{a}_{i} \cap R^{\prime}$, write $x=\sum Q_{(v)} t_{1}^{v_{1}} \cdots t_{\ell}^{v_{\ell}}$ with $(v)=\left(v_{1}, \ldots, v_{\ell}\right) \in \mathbb{Z}_{\geq 0}^{\ell}$ and $Q_{(v)} \in k\left[t_{\ell+1}, \ldots, t_{m}\right]$. Then $Q_{(0)}$ lies in $\mathfrak{a}_{i} \cap k\left[t_{\ell+1}, \ldots, t_{m}\right]$. The latter is equal to zero. It is zero if $i \leq r-1$ because it lies in $\mathfrak{a}_{i} \cap k\left[u_{\ell+1}, \ldots, u_{m}\right]$, which is equal to zero. and $\mathfrak{a}_{r} \cap k\left[t_{s+1}, \ldots, t_{m}\right]$ is equal to $\left(t_{s+1}, \ldots, t_{\ell}\right)$ by hypothesis. So $\mathfrak{a}_{r} \cap k\left[t_{\ell+1}, \ldots, t_{m}\right]=0$. Thus $Q_{(0)}=0$. Hence $x \in\left(t_{1}, \ldots, t_{h(i)}\right)$. Thus $\mathfrak{a}_{i} \cap R^{\prime}$ is contained in $\left(t_{1}, \ldots, t_{h(i)}\right)$. So the two are equal. Thus (b) holds, and the theorem is proved.

Remark (Another proof). Suppose k is infinite. Then in the proof of the first case, we can take $t_{i}:=T_{i}-a_{i} T_{1}$ for suitable $a_{i} \in k$. Namely, say $t_{1}=H_{d}+\cdots+H_{0}$ where H_{i} is homogeneous of degree i in T_{1}, \ldots, T_{m} and $H_{d} \neq 0$. Since k is infinite, there exist $a_{i} \in k$ such that $H_{d}\left(1, a_{2}, \ldots, a_{m}\right) \neq 0$. Since $H_{d}\left(1, a_{2}, \ldots, a_{m}\right)$ is the coefficient of T_{1}^{d} in

$$
H_{d}\left(T_{1}, t_{2}+a_{2} T_{1}, \ldots, t_{m}+a_{m} T_{1}\right)
$$

after collecting like powers of T_{1}, the equation
$t_{1}-H_{d}\left(T_{1}, t_{2}+a_{2} T_{1}, \ldots, t_{m}+a_{m} T_{1}\right)-\cdots-H_{0}\left(T_{1}, t_{2}+a_{2} T_{1}, \ldots, t_{m}+a_{m} T_{1}\right)=0$
becomes an equation of integral dependence of degree d for T_{1} over $k\left[t_{1}, \ldots, t_{m}\right]$.

