MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 11

Recall from last time that we defined the group scheme $\underline{\operatorname{Pic}}_{X}$ over k as well as the group scheme $\underline{\operatorname{Pic}}_{X}^{0}$, which is the connected component of 0 (i.e. \mathcal{O}_{X}) in Pic_{X} (and is a proper scheme over k). Now, let L be a line bundle in the class corresponding to the universal element. L is a line bundle on $X \times \operatorname{Pic}_{X}^{0}$. Choose a closed point x of X and let $M=\left.L\right|_{\{x\} \times \text { Pic }_{X}^{0}}$. Then replace L by $L \otimes\left(p_{2}^{*} M\right)^{-1}$ so that we get $\left.L\right|_{\{x\} \times \operatorname{Pic}_{X}^{0}} \cong \mathcal{O}_{\operatorname{Pic}_{X}^{0}}$ and, for every closed point $a \in \operatorname{Pic}_{X}^{0}$, the line bundle $L_{a}=L_{X \times\{a\}}$ is algebraically equivalent to 0 . Such an L is called a Poincaré line bundle on $X \times \operatorname{Pic}_{X}^{0}$. Given a choice of basepoint a, it is unique up to isomorphism. Now, note further that the Zariski tangent space at 0 of $\operatorname{Pic}_{X}^{0}$ is canonically isomorphic to $H^{1}\left(X, \mathcal{O}_{X}\right)$ and Pic_{X}^{0} is a commutative group scheme. If it is reduced, then it is an abelian variety. If $\operatorname{char}(k)=0$, it is automatically reduced (by a theorem of Grothendieck-Cartier).
Theorem 1. Let X be a surface, $q=h^{1}\left(X, \mathcal{O}_{X}\right)$ its irregularity, s the dimension of the Picard variety of X. Let b_{1} be the first Betti number $=h_{e t t}^{1}\left(X, \mathbb{Q}_{\ell}\right)$. Then $b_{1}=2 s$ and $\Delta=2 q-b_{1}=2(q-s)$ lies between 0 and $2 p_{g}$, while $\Delta=0$ if $\operatorname{char}(k)=0$.
Proof. Note that, for ℓ relatively prime to $p=\operatorname{char}(k), \ell \gg 0$

$$
\begin{align*}
(\mathbb{Z} / \ell \mathbb{Z})^{b_{1}} & =H_{e t}^{1}(X, \mathbb{Z} / \ell \mathbb{Z})=\{a \in \operatorname{Pic} X \mid \ell \cdot a=0\} \\
& =\left\{a \in \operatorname{Pic}^{0} X \mid \ell \cdot a=0\right\}=(\mathbb{Z} / \ell \mathbb{Z})^{2 s} \tag{1}
\end{align*}
$$

where the second equality follows from Kummer theory on $0 \rightarrow \mu_{\ell} \rightarrow \mathbb{F}_{m} \xrightarrow{\ell}$ $\mathbb{F}_{m} \rightarrow 0$, the second from the fact that $\mathrm{Pic} / \mathrm{Pic}^{0}$ is finitely generated, so the torsion group is finite and ℓ can be chosen larger than the size of the torsion group, and the third because $\operatorname{Pic}^{0}(X)$ is the underlying abelian group of the Picard variety of X. The closed points of $\underline{\operatorname{Pic}}_{X}^{0}=\left(\underline{\operatorname{Pic}}_{X}^{0}\right)_{\text {red }}$, so $b_{1}=2 s$.

Now,

$$
\begin{equation*}
\Delta=2 q-b_{1}=2(q-s)=2 \operatorname{dim} T_{\operatorname{Pic}_{X}^{0}, 0}-\operatorname{dim} T_{\left(\operatorname{Pic}_{X}^{0}\right)_{\text {red }, 0}} \geq 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
q-s=\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)-\operatorname{dim}\left(\cap_{i=1}^{\infty} \operatorname{Ker} \beta_{i}\right) \tag{3}
\end{equation*}
$$

where the β_{i} are the Bockstein homomorphisms defined inductively by

$$
\begin{equation*}
\beta_{1}: H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right), \beta_{i}: \operatorname{Ker} \beta_{i-1} \rightarrow \operatorname{coker} \beta_{i-1} \tag{4}
\end{equation*}
$$

Thus, $q-s \leq \operatorname{dim}\left(\cup_{i=1}^{\infty} \operatorname{Im} \beta_{i}\right) \leq h^{2}\left(X, \mathcal{O}_{X}\right)=p_{g}$. In characteristic 0 , proper group schemes of finite type are reduced, so $\underline{\operatorname{Pic}}_{X}^{0}$ is already an abelian variety.
0.1. The Albanese Variety. Let X be a smooth projective variety, $x_{0} \in X$ a fixed closed point. A pair (A, α) consisting of an abelian variety and a morphism $\alpha: X \rightarrow A$ s.t. $\alpha_{x_{0}}=0$ is called the Albanese variety of X. For every morphism $f: X \rightarrow B$ s.t. B is an abelian variety and $f\left(x_{0}\right)=0, \exists$ a unique homomorphism of abelian varieties $g: A \rightarrow B$ s.t. the diagram below commutes.

Note that a rigidity theorem for abelian varieties implies that any morphism (as varieties) $g^{\prime}: A \rightarrow B$ is of the form $g^{\prime}(a)=g(a)+b$ where $g: A \rightarrow B$ is a homomorphism of abelian varieties and $b=g^{\prime}(0) \in B$. Thus, we can formulate the definition without the closed point x_{0}, where we say that there exists a unique homomorphism $g: A \rightarrow B$ s.t. $g \circ \alpha=f$. It is clearly unique if it exists.

For existence, let X be a smooth projective variety, and let $P(X)$ be the reduced Picard variety of X, and $P(X)^{\vee}$ its dual abelian variety. Then $\underline{\operatorname{Pic}}_{P(X)}^{0}=$ $P(X)^{\vee}$ (for an abelian variety, Pic^{0} is automatically reduced). We have a universal Poincaré line bundle L on $X \times \underline{\operatorname{Pic}}_{X}^{0}$ and therefore on the reduced subscheme $X \times P(X)$. Let $\mu: X \times P(X) \rightarrow X \times P(X)$ be the switch $(y, x) \mapsto(x, y) . \mu^{*} L$ is a line bundle on $P(X) \times X$ and therefore comes from the Poincaré bundle on $P(X) \times P(X)^{\vee}$ by a map $X \rightarrow P(X)^{\vee}$ (by the universal property of $\left.\mathrm{Pic}_{P(X)}^{0}\right)$. One can check that this gives $P(X)^{\vee}$ as the Albanese variety of X using general nonsense, so $\operatorname{Alb}(X)$ exists and is unique up to unique isomorphism. Furthermore, it is dual to the Picard variety of X.

Note: If X is a smooth projective curve, then $\operatorname{Pic}^{0}(X)$ is reduced and carries a principal polarization, so $P(X)^{\vee} \cong P(X) \cong \operatorname{Pic}_{X}^{0}$ is the Jacobian of X. For a surface, we showed that the dimension of the Albanese variety is $\leq q$, with equality holding $\Leftrightarrow \Delta=0$ (e.g. if $\operatorname{char}(k)=0$ or if $p_{g}=0$).

If $k=\mathbb{C}$, there is an explicit way to see the Albanese variety. We have a map $i: H_{1}(X, \mathbb{Z}) \rightarrow H^{0}\left(X, \Omega_{X}^{1}\right)^{*}$ defined by $\langle i(\gamma), \omega\rangle=\int_{\gamma} \omega$. The image of i is a lattice in $H^{0}\left(X, \Omega_{X}^{1}\right)^{*}$, and the quotient is an abelian variety (a priori a complex torus, but a Riemann form exists). It is $\operatorname{Alb}(X)$, and is functorial in X, i.e.

It follows that the image of X in $\operatorname{Alb}(X)$ generates the abelian variety (else the subvariety that X generates inside $\operatorname{Alb}(X)$ would satisfy the universal property). In particular, if $\operatorname{Alb}(X) \neq 0, \alpha(X)$ is not a point, and if $X \rightarrow Y$ is a surjection, so is $\operatorname{Alb}(X) \rightarrow \operatorname{Alb}(Y)$. Over \mathbb{C}, our construction gives us an isomorphism $\alpha_{*}: H_{1}(X, \mathbb{Z}) \rightarrow H_{1}(\operatorname{Alb}(X), \mathbb{Z})$, so the inverse image under α of any étale covering of $\operatorname{Alb}(X)$ is connected. All Abelian coverings are obtained in this way.

For now, assume that $\operatorname{char}(k)=0$.
Proposition 1. Let X be a surface, $\alpha: X \rightarrow \operatorname{Alb}(X)$ the Albanese map. Suppose $\alpha(X)$ is a curve C. Then C is a smooth curve of genus q, and the fibers of α are connected.

We first prove the following lemma:
Lemma 1. Suppose α factors as $X \xrightarrow{f} T \xrightarrow{j} \operatorname{Alb}(X)$ with f surjective. Then $\tilde{j}: \operatorname{Alb}(T) \rightarrow \operatorname{Alb}(X)$ is an isomorphism.

Proof. The functoriality of Alb gives a surjective morphism $\operatorname{Alb}(X) \rightarrow \operatorname{Alb}(T)$ (since $X \rightarrow T$ is surjective), along with a commutative diagram

$\tilde{j} \circ f$ is the identity by the universal property, so \tilde{j} must be an isomorphism.

