18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 11

Recall from last time that we defined the group scheme $\underline{\operatorname{Pic}}_X$ over k as well as the group scheme $\underline{\operatorname{Pic}}_X^0$, which is the connected component of 0 (i.e. \mathcal{O}_X) in $\underline{\operatorname{Pic}}_X$ (and is a proper scheme over k). Now, let L be a line bundle in the class corresponding to the universal element. L is a line bundle on $X \times \operatorname{Pic}_X^0$. Choose a closed point x of X and let $M = L|_{\{x\} \times \underline{\operatorname{Pic}}_X^0}$. Then replace L by $L \otimes (p_2^* M)^{-1}$ so that we get $L|_{\{x\} \times \underline{\operatorname{Pic}}_X^0} \cong \mathcal{O}_{\underline{\operatorname{Pic}}_X^0}$ and, for every closed point $a \in \operatorname{Pic}_X^0$, the line bundle $L_a = L_{X \times \{a\}}$ is algebraically equivalent to 0. Such an L is called a Poincaré line bundle on $X \times \operatorname{Pic}_X^0$. Given a choice of basepoint a, it is unique up to isomorphism. Now, note further that the Zariski tangent space at 0 of Pic_X^0 is canonically isomorphic to $H^1(X, \mathcal{O}_X)$ and Pic_X^0 is a commutative group scheme. If it is reduced, then it is an abelian variety. If $\operatorname{char}(k) = 0$, it is automatically reduced (by a theorem of Grothendieck-Cartier).

Theorem 1. Let X be a surface, $q = h^1(X, \mathcal{O}_X)$ its irregularity, s the dimension of the Picard variety of X. Let b_1 be the first Betti number $= h^1_{\acute{e}t}(X, \mathbb{Q}_\ell)$. Then $b_1 = 2s$ and $\Delta = 2q - b_1 = 2(q - s)$ lies between 0 and $2p_g$, while $\Delta = 0$ if $\operatorname{char}(k) = 0$.

Proof. Note that, for ℓ relatively prime to $p = char(k), \ell >> 0$

(1)
$$(\mathbb{Z}/\ell\mathbb{Z})^{b_1} = H^1_{\acute{e}t}(X, \mathbb{Z}/\ell\mathbb{Z}) = \{a \in \operatorname{Pic} X | \ell \cdot a = 0\} \\ = \{a \in \operatorname{Pic}^0 X | \ell \cdot a = 0\} = (\mathbb{Z}/\ell\mathbb{Z})^{2s}$$

where the second equality follows from Kummer theory on $0 \to \mu_{\ell} \to \mathbb{F}_m \xrightarrow{\ell} \mathbb{F}_m \to 0$, the second from the fact that Pic/Pic⁰ is finitely generated, so the torsion group is finite and ℓ can be chosen larger than the size of the torsion group, and the third because Pic⁰(X) is the underlying abelian group of the Picard variety of X. The closed points of $\underline{\text{Pic}}_X^0 = (\underline{\text{Pic}}_X^0)_{\text{red}}$, so $b_1 = 2s$. Now,

(2)
$$\Delta = 2q - b_1 = 2(q - s) = 2\dim T_{\operatorname{Pic}_X^0, 0} - \dim T_{(\underline{\operatorname{Pic}}_X^0)_{\operatorname{red}, 0}} \ge 0$$

and

(3)
$$q-s = \dim H^1(X, \mathcal{O}_X) - \dim \left(\bigcap_{i=1}^{\infty} \operatorname{Ker} \beta_i \right)$$

where the β_i are the *Bockstein homomorphisms* defined inductively by

(4)
$$\beta_1 : H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_X), \beta_i : \operatorname{Ker} \beta_{i-1} \to \operatorname{coker} \beta_{i-1}$$

Thus, $q - s \leq \dim (\bigcup_{i=1}^{\infty} \operatorname{Im} \beta_i) \leq h^2(X, \mathcal{O}_X) = p_g$. In characteristic 0, proper group schemes of finite type are reduced, so $\underline{\operatorname{Pic}}_X^0$ is already an abelian variety. \Box

0.1. The Albanese Variety. Let X be a smooth projective variety, $x_0 \in X$ a fixed closed point. A pair (A, α) consisting of an abelian variety and a morphism $\alpha : X \to A$ s.t. $\alpha_{x_0} = 0$ is called the *Albanese variety* of X. For every morphism $f : X \to B$ s.t. B is an abelian variety and $f(x_0) = 0, \exists$ a unique homomorphism of abelian varieties $g : A \to B$ s.t. the diagram below commutes.

$$\begin{array}{cccc} X & \xrightarrow{f} B \\ \alpha & \swarrow & \swarrow \\ A \end{array}$$

Note that a rigidity theorem for abelian varieties implies that any morphism (as varieties) $g' : A \to B$ is of the form g'(a) = g(a) + b where $g : A \to B$ is a homomorphism of abelian varieties and $b = g'(0) \in B$. Thus, we can formulate the definition without the closed point x_0 , where we say that there exists a unique homomorphism $g : A \to B$ s.t. $g \circ \alpha = f$. It is clearly unique if it exists.

For existence, let X be a smooth projective variety, and let P(X) be the reduced Picard variety of X, and $P(X)^{\vee}$ its dual abelian variety. Then $\underline{\operatorname{Pic}}_{P(X)}^{0} = P(X)^{\vee}$ (for an abelian variety, Pic^{0} is automatically reduced). We have a universal Poincaré line bundle L on $X \times \underline{\operatorname{Pic}}_{X}^{0}$ and therefore on the reduced subscheme $X \times P(X)$. Let $\mu : X \times P(X) \to X \times P(X)$ be the switch $(y, x) \mapsto (x, y)$. $\mu^{*}L$ is a line bundle on $P(X) \times X$ and therefore comes from the Poincaré bundle on $P(X) \times P(X)^{\vee}$ by a map $X \to P(X)^{\vee}$ (by the universal property of $\operatorname{Pic}_{P(X)}^{0}$). One can check that this gives $P(X)^{\vee}$ as the Albanese variety of X using general nonsense, so Alb (X) exists and is unique up to unique isomorphism. Furthermore, it is dual to the Picard variety of X.

Note: If X is a smooth projective curve, then $\operatorname{Pic}^{0}(X)$ is reduced and carries a principal polarization, so $P(X)^{\vee} \cong P(X) \cong \operatorname{Pic}^{0}_{X}$ is the Jacobian of X. For a surface, we showed that the dimension of the Albanese variety is $\leq q$, with equality holding $\Leftrightarrow \Delta = 0$ (e.g. if $\operatorname{char}(k) = 0$ or if $p_{g} = 0$).

If $k = \mathbb{C}$, there is an explicit way to see the Albanese variety. We have a map $i : H_1(X,\mathbb{Z}) \to H^0(X,\Omega^1_X)^*$ defined by $\langle i(\gamma),\omega\rangle = \int_{\gamma} \omega$. The image of *i* is a lattice in $H^0(X,\Omega^1_X)^*$, and the quotient is an abelian variety (a priori a complex torus, but a Riemann form exists). It is Alb (X), and is functorial in X, i.e.

(6)
$$\begin{array}{c} X \longrightarrow Y \\ \alpha_X \bigvee \qquad & \bigvee \alpha_Y \\ \operatorname{Alb}(X) \longrightarrow \operatorname{Alb}(Y) \end{array}$$

It follows that the image of X in Alb (X) generates the abelian variety (else the subvariety that X generates inside Alb (X) would satisfy the universal property). In particular, if Alb $(X) \neq 0$, $\alpha(X)$ is not a point, and if $X \to Y$ is a surjection, so is Alb $(X) \to$ Alb (Y). Over \mathbb{C} , our construction gives us an isomorphism $\alpha_* : H_1(X,\mathbb{Z}) \to H_1(\text{Alb}(X),\mathbb{Z})$, so the inverse image under α of any étale covering of Alb (X) is connected. All Abelian coverings are obtained in this way. For now, assume that char(k) = 0.

Proposition 1. Let X be a surface, $\alpha : X \to Alb(X)$ the Albanese map. Suppose $\alpha(X)$ is a curve C. Then C is a smooth curve of genus q, and the fibers of α are connected.

We first prove the following lemma:

Lemma 1. Suppose α factors as $X \xrightarrow{f} T \xrightarrow{j} Alb(X)$ with f surjective. Then \tilde{j} : Alb $(T) \rightarrow Alb(X)$ is an isomorphism.

Proof. The functoriality of Alb gives a surjective morphism $Alb(X) \to Alb(T)$ (since $X \to T$ is surjective), along with a commutative diagram

(7)
$$\begin{array}{c} X \xrightarrow{f} T \\ \alpha_x \downarrow & \alpha_T \downarrow \\ Alb\left(X\right) \xrightarrow{\cong}{f} Alb\left(T\right) \xrightarrow{\tilde{j}} Alb\left(X\right) \end{array}$$

 $\tilde{j} \circ f$ is the identity by the universal property, so \tilde{j} must be an isomorphism. \Box