MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 12

LECTURES: ABHINAV KUMAR

Today we will prove the uniqueness of minimal models of non-ruled surfaces (in characteristic 0) and talk about the characterization of ruled surfaces.

Theorem 1 (Grothendieck-Cartier). In characteristic 0, a group scheme G is always reduced.

Proposition 1. Let X be a surface, $\alpha: X \rightarrow \operatorname{Alb}(X)$ the Albanese map. Suppose $\alpha(X)$ is a curve C. Then C is a smooth curve of genus q, and the fibers of α are connected.

Lemma 1. Suppose α factors as $X \xrightarrow{f} T \xrightarrow{j} \operatorname{Alb}(X)$ with f surjective. Then $\tilde{j}: \operatorname{Alb}(T) \rightarrow \operatorname{Alb}(X)$ is an isomorphism.
Lemma 2. Let X be a surface with $p_{g}=0, q \geq 1, \alpha: X \rightarrow \operatorname{Alb}(X)$ its Albanese map. Then $\alpha(X)$ is a curve.

Proof. If $Y=\alpha(X)$ is a surface, then the morphism $\alpha^{\prime}: X \rightarrow Y$ is generically finite, hence generically étale (in characteristic 0). Pick a smooth point $y \in Y$, and find an invariant differential form $\omega: H^{0}\left(\operatorname{Alb}(X), \Omega^{2}\right)$ which is nonzero at y (since $\operatorname{Alb}(X)$ is an abelian variety). Then $\alpha^{*} \omega$ is a nonzero element of $H^{0}\left(X, \omega_{X}\right)$, contradicting $p_{g}=0$.

Theorem 2. Let X, X^{\prime} be two nonruled minimal surfaces. Then every birational map from X to X^{\prime} is an isomorphism. In particular, every nonruled surface admits a unique minimal model up to isomorphism. The group of birational maps from a nonruled minimal surface to itself coincides with the group of automorphisms of the surface.

Proof. (In characteristic 0: holds in positive characteristic with some modifications.) Let $\phi: X^{\prime} \rightarrow X$ be a birational map. Then \exists a series of blowups $\pi_{1} \circ \cdots \circ \pi_{n}: \tilde{X} \rightarrow X$ resolving ϕ to a morphism $f: \tilde{X} \rightarrow X$. Choose one with n minimal. If $n=0$, we are done, so assume that $n \geq 1$. Let E be the exceptional curve of the blowup π_{n}. Then $f(E)$ is a curve in X, otherwise f would factor as $f^{\prime} \circ \pi_{n}$ contradicting minimality of n. Now, calculate $C \cdot K_{X}$. If $\pi: \tilde{Y} \rightarrow Y$ is a blowup of a point p on a surface Y, and \tilde{D} is an irreducible curve in \tilde{Y} such that $\pi(\tilde{D})$ is a curve D, then we have $K_{\tilde{Y}} \cdot \tilde{D}=K_{Y} \cdot D+m \geq K_{Y} \cdot D$, where m is the
multiplicity of D at p, i.e. $E \cdot \tilde{D}$. Equality holds iff \tilde{D} doesn't intersect the exceptional divisor. Since f is composed of blowups, we get $K_{X} \cdot C \leq K_{\tilde{X}} \cdot E=-1$ with equality iff E doesn't meet any curve contracted by f. But in that case, f restricted to E is an isomorphism, so C is a rational curve with $K \cdot C=-1$, contradicting the minimality of X. So $K_{X} \cdot C \leq-2$, and $C^{2} \geq 0$ by the genus formula. Now, this implies that all the plurigenera vanish, for if $|n K|$ contained an effective divisor D for $n \geq 1$, then $D \cdot C \geq 0$ by the useful lemma and $K_{X} \cdot C \geq 0$, a contradiction. If $q=0$, Castelnuovo's theorem (for $q=0, p_{2}=0$) implies that X is rational, excluded by hypothesis. If $q>0, X \rightarrow \operatorname{Alb}(X)$ gives a surjective morphism $p: X \rightarrow B$ with connected fibers, where B is a smooth curve of genus $q>0$. Since C is rational, C is contained in a fiber of p, and since $C^{2} \geq 0$, we must have $F=r C$ for some r, so $C^{2}=0 \Longrightarrow C \cdot K=-2$. Again, the genus formula gives $r=1, g(F)=0$ and C smooth, which by Noether-Enriques implies that X is ruled, with is also excluded.

We now go on to separate surfaces into the following types.
(a) There is an integral curve C on X with $K \cdot C<0$.
(b) For every integral curve C on K, we have $K \cdot C=0$, i.e. $K \equiv 0$.
(c) $K^{2}=0, K \cdot C \geq 0$ for every integral curve C on X, and there is at least one integral curve C^{\prime} s.t. $K \cdot C^{\prime}>0$.
(d) $K^{2}>0$, and $K \cdot C \geq 0$ for every integral curve C on X.

We will show that:
(1) X is in class (a) $\Leftrightarrow \kappa(X)=-\infty \Leftrightarrow p_{4}=p_{6}=0 \Leftrightarrow p_{12}=0$
(2) X is in class (b) $\Leftrightarrow \kappa(X)=0 \Leftrightarrow 4 K \sim 0$ or $6 K \sim 0 \Leftrightarrow 12 K \sim 0$.
(3) X is in class (c) $\Leftrightarrow \kappa(X)=1 \Leftrightarrow|4 K|$ or $|6 K|$ has a strictly positive divisor at $K^{2} \Leftrightarrow|12 K|$ has a strictly positive divisor and $K^{2}=0$.
(4) X is in class $(\mathrm{d}) \Leftrightarrow \kappa(X)=2 \Leftrightarrow|2 K| \neq \varnothing$.

Proof. We demonstrate this following Mumford, Mumford-Bombieri, and Badescu. First, let us see that every surface is exactly in one of the classes above. Mutual exclusivity is obvious. If X is not in any of the four classes, then $K^{2}<0$ and $K \cdot C \geq 0$ for every curve C on X. We can exclude this case as follows: let H be a hyperplane section, $D=a K+b H$ for a, b natural numbers. Then $D^{2}=a^{2} K^{2}+2 a b K \cdot H+b^{2} H^{2}=a^{2} P(b / a)$ for $P(t)=H^{2} t^{2}+2(K \cdot H) t+K^{2}$. By our hypothesis, P is an increasing function on $[0, \infty)$, is eventually positive, and $P(0)<0$, implying that it has a unique root t_{0}. For $b / a>t_{0}, 0<a^{2} P(b / a)=D^{2}$. Also, for every integral $C, D \cdot C=a(K \cdot C)+b(H \cdot C)>0$. By Nakai-Moishezon, such a D is ample, so $n D$ is very ample for $n \gg 0$ and $K \cdot D \geq 0$. Thus, for $t>t_{0},(K \cdot H) t+K^{2} \geq 0$, and by continuity, the same is true for $t=t_{0}$. $P\left(t_{0}\right) \geq H^{2} t_{0}^{2}-K^{2}>0$, giving us a contradiction.

Now we begin to prove or equivalences. To show (i), we need to show that (a) $\Longrightarrow X$ is ruled. In fact, we can replace (a) by saying that \exists an effective divisor D on X s.t. $K \cdot D<0$.

- Step 1: there is an ample H s.t. $K \cdot H<0$. To see this, note that if $C^{2}<0$, then $K \cdot C+C^{2}=2 p_{a}(C)-2 \geq-2$, implying that $K \cdot C=C^{2}=-1$ and so X is not minimal. Thus, $C^{2} \geq 0$. Let H_{1} be an ample divisor on X. Then, for all $n \geq 0, n C+H_{1}$ is ample by Nakai-Moishezon, and for $n \gg 0, K \cdot\left(n C+H_{1}\right)<0$ so we're done.
- Step 2: If $K^{2}>0$, then X is rational, hence ruled. Noether's formula gives $12 \chi\left(O O_{X}\right)=K^{2}+c_{2}=K^{2}+2-2 b_{1}+b_{2}$. Since $p_{g}=0$ (if $|n K|$ were effective, $n K \cdot H$ would be positive, contradicting Step 1), it follows that the Picard scheme is reduced, $b_{1}=2 q$, and $10=8 q+K^{2}+b_{2}$. If $K^{2}>0$, then $q=0$ or 1 is forced. If $q=1$, then since $q=s=\operatorname{dim} \operatorname{Alb}(X)$, there is a morphism $X \rightarrow E$ to an elliptic curve, and so $b_{2} \geq 2$ (Pic has the class of a fiber and class of a hyperplane section). This is impossible, so $q=0$. By Castelnuovo, X is rational and thus ruled.
- Step 3: If $K^{2} \leq 0$, then for all n, there is an effective divisor D on X s.t. $|D+K|=\varnothing$ and $\operatorname{dim}|D| \geq n$. To see this, Let H be an ample divisor s.t. $K \cdot H<0$. For all $n,(n H+m K) \cdot H<0$ for $m \gg 0$ (depending on n), so $n H+m K$ can't be linearly equivalent to an effective divisor for $m \gg 0$. Let m_{n} be a nonnegative integer s.t. $\left|n H+m_{n} K\right| \neq \varnothing$ but $\left|n H+\left(m_{n}+1\right) K\right|=\varnothing$. Len $D_{n} \in\left|n H+m_{n} K\right|$, and write it as $D_{n}^{\prime}+D_{n}^{\prime \prime}$, where each summand is positive and the components E of D_{n}^{\prime} satisfy $E \cdot K<0$, while those of $D_{n}^{\prime \prime}$ satisfy $E \cdot K \geq 0$. Note that $E \cdot K<0 \Longrightarrow E^{2} \geq 0$ (E not exceptional), so $\left(D_{n}^{\prime}\right)^{2} \geq 0$. Next, $\left|K-D_{n}^{\prime}\right| \subset|K|=\varnothing$, so by Serre duality $H^{2}\left(\mathcal{O}_{X}\left(D_{n}^{\prime}\right)\right)=0$. RiemannRoch gives that

$$
\begin{aligned}
\operatorname{dim}\left|D_{n}^{\prime}\right| & =h^{0}\left(\mathcal{O}_{X}\left(D_{n}^{\prime}\right)\right)-1 \geq \chi\left(\mathcal{O}_{X}\left(D_{n}^{\prime}\right)\right)-1 \\
& \geq \frac{\left(D_{n}^{\prime} \cdot\left(D_{n}^{\prime}-K\right)\right)}{2}+\chi\left(\mathcal{O}_{X}\right)-1 \\
& \geq \frac{-D_{n}^{\prime} \cdot K}{2}+\chi\left(\mathcal{O}_{X}\right)-1 \\
& \geq \frac{-D_{n} \cdot K}{2}+\chi\left(\mathcal{O}_{X}\right)-1 \\
& \geq \frac{-n(H \cdot K)}{2}-\frac{m_{n} K^{2}}{2}+\chi\left(\mathcal{O}_{X}\right)-1 \\
& \geq \frac{n}{2}+\chi\left(\mathcal{O}_{X}\right)-1 \rightarrow \infty \text { as } n \rightarrow \infty
\end{aligned}
$$

Also, $\left|K+D_{n}^{\prime}\right| \subset\left|K+D_{n}\right|=\left|n H+\left(m_{n}+1\right) K\right|=\varnothing$.

- Step 4: If D is an effective divisor s.t. $|K+D|=\varnothing$, then the natural map $\operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(D)$ is surjective. To see this, note that $h^{0}\left(\mathcal{O}_{X}(K+D)\right)=$ $h^{2}\left(\mathcal{O}_{X}(-D)\right)=0$. Now, $0 \rightarrow \mathcal{O}_{X}(-D) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0$ gives that $H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{D}\right)$ is surjective. These are the tangent spaces at 0 to the connected and reduced group schemes $\operatorname{Pic}^{0}(X)$ and $\operatorname{Pic}^{0}(D)\left(\operatorname{Pic}^{0}(X)\right.$ is reduced since $p_{g}=0$ so $\left.\Delta=0\right)$. Thus, the desired map is surjective.
- Step 5: If D is an effective divisor s.t. $|K+D|=\varnothing$ and if $D=\sum n_{i} E_{i}$, then
(1) All the E_{i} are nonsingular, and $\sum p_{a}\left(E_{i}\right) \leq q=h^{1}\left(X, \mathcal{O}_{X}\right)$.
(2) $\left\{E_{i}\right\}$ is a configuration of curves with no loops, and E_{i} intersect transversely.
(3) If $n_{i} \geq 2 j$ then either
(a) E_{i} is rational,
(b) $\left(E_{i}\right)^{2}<0$, or
(c) E_{i} is an elliptic curve with $E_{i}^{2}=0$ and the normal bundle of E_{i} in X is nontrivial.

