MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 16

LECTURES: ABHINAV KUMAR

1. K3 Surfaces contd.

Lemma 1. Let $f: X^{\prime} \rightarrow X$ be an étale map of degree n between surfaces X and X^{\prime}. Then $\chi\left(\mathcal{O}_{X^{\prime}}\right)=n \chi\left(\mathcal{O}_{X}\right)$.

Proof. (In fact, this is true for general projective varieties, as a consequence of Grothendieck-Riemann-Roch.) Since f is étale, $f^{*}\left(\Omega_{X / k}^{1}\right)=\Omega_{X^{\prime} / k}^{1}$ from

$$
\begin{equation*}
0 \rightarrow f^{*}\left(\Omega_{X / k}^{1}\right) \rightarrow \Omega_{X^{\prime} / k}^{1} \rightarrow \Omega_{X^{\prime} \mid X}^{1}=0 \tag{1}
\end{equation*}
$$

with the latter equality following from X^{\prime} being étale over X. Thus, $f^{*} T_{X}=$ $T_{X^{\prime}}$ and $c_{2}\left(X^{\prime}\right)=c_{2}\left(T_{X^{\prime}}\right)=c_{2}\left(f^{*} T_{X}\right)=f^{*} c_{2}(X)$ where c_{2} is the class of T_{X} in the Chow ring of X. Taking degrees of these zero-cycles, we get $c_{2}\left(X^{\prime}\right)=$ $(\operatorname{deg} f) c_{2}(X)=n c_{2}(X)$. We further have $\omega_{X^{\prime}}=f^{*} \omega_{X},\left(\omega_{X^{\prime}} \cdot \omega_{X^{\prime}}\right)=\operatorname{deg} f\left(\omega_{X}\right.$. $\left.\omega_{X}\right)=n\left(\omega_{X} \cdot \omega_{X}\right)$. By Noether's formula, $\chi\left(\mathcal{O}_{X^{\prime}}=\frac{1}{12}\left[\left(\omega_{X^{\prime}} \cdot \omega_{X^{\prime}}\right)+c_{2}\left(X^{\prime}\right)\right]=\right.$ $\frac{n}{12}\left[\left(\omega_{X} \cdot \omega_{X}\right)+c_{2}(X)\right]=n \chi\left(\mathcal{O}_{X}\right)$.

1.1. Examples of $K 3$ surfaces.

(1) A smooth quartic in $\mathbb{P}^{3}: \omega_{X}=\mathcal{O}_{X}(4-3-1)=\mathcal{O}_{X}$. Check that $H^{1}\left(X, \mathcal{O}_{X}\right)=0$
(2) Similarly, a smooth complete intersection of 3 quadrics in \mathbb{P}^{5} or a smooth complete intersection of a quadric and a cubic in \mathbb{P}^{4} give $K 3$ surfaces.
(3) A double sextic, i.e. a double cover of \mathbb{P}^{2} branched over the zero locus of a smooth sextic polynomial (e.g. $z^{2}=f(x, y)$ for f a polynomial of degree 6).
(4) For chark $\neq 2$, we get Kummer surfaces: starting with an abelian surface A over k, let $i: A \rightarrow A$ be the involution $x \mapsto-x$, and note that there are 16 fixed points, namely the points of $A[2](\bar{k})$. Blow these up to get $\pi: \tilde{A} \rightarrow A$. \tilde{A} has 16 exceptional curves of the first kind, and i extends to give an involution \tilde{i} of \tilde{A}. Then $\tilde{A} /\{1, \tilde{i}\}$ is a nonsingular surface and is $K 3$, called the Kummer surface of A.

To see this, we first show that $Y=\tilde{A} /\{1, \tilde{i}\}$ is smooth. Let $x_{i}, i=$ $1, \ldots, 16$ be the fixed points, $F_{i}=\pi^{-1}\left(x_{i}\right)$ the corresponding exceptional divisors. Now $\phi: \tilde{A} \rightarrow Y$ is étale away from $\bigcup F_{i}$. So we need to show
that Y is smooth for a point in the image of $\bigcup F_{i}$. The translation $\tau_{x_{i}}$ induces an isomorphism $\tilde{A} \rightarrow \tilde{A}$ taking F_{o} to F_{i}. So it is enough to take a point on F_{0}, say x. Let u, v be regular local parameters at 0 . We can take u, v s.t. $i^{*} u=-u, i^{*} v=-v$. Let $x \in F_{1}$, and assume that U and $t=\frac{v}{u}$ is a regular system of parameters at x. Then $i^{*}(u)=-u, i^{*}\left(\frac{v}{u}\right)=\frac{v}{u}$, implying that $u^{2}, \frac{v}{u}=t$ is a regular system of parameters at $\phi(x)$ and Y is smooth.

Now, let's compute the canonical bundle. We can trivialize ω_{A} so that locally at 0 , it is $d u \wedge d v$. At $x \in F, \omega=d u \wedge d v=d u \wedge d(t u)=$ $u d u \wedge d t=\frac{1}{2} d\left(u^{2}\right) \wedge d t$. So we see from the fact that u^{2}, t are regular local parameters at $\phi(x)$ that the divisor of ω_{Y} is zero $\Longrightarrow \omega_{Y} \cong \mathcal{O}_{Y}$. Now the images of the 16 exceptional divisors are $E_{i}=\phi\left(F_{i}\right)$ and satisfy $E_{i}^{2}=-2, E_{i} \cdot E_{j}=0$ for $i \neq j$. So we see that the Picard number $\rho(X) \geq 17$ (including the ample class). By the Igusa-Severi inequality, $b_{2} \geq \rho \geq 17$. By our classification, $b_{2}=22$ and Y is $K 3$.
1.2. Some general theory of K3 surfaces. Over \mathbb{C}, the Hodge diamond $h^{p, q}=$ $h^{q p}=H^{p}\left(X, \Omega^{q}\right)$ has the form

1	0	1
0	20	0

$1 \quad 0 \quad 1$
Recall that $H^{n}(X, \mathbb{Z}) \otimes \mathbb{C}=\bigoplus_{p+q=n} H^{p, q} . H^{2}(X, \mathbb{Z})$ is of fundamental importance. It is torsion free, and a lattice under the pairing given by the cup product. This pairing is symmetric, even, and unimodular. By the Hirzebruch index theorem, its signature is $(3,19)$. By Noether's classification, it equals $U^{3} \oplus E_{8}(-1)^{2}$, where $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and

$$
E_{8}(-1)=\left(\begin{array}{cccccccc}
-2 & 1 & & & & & & \tag{3}\\
1 & -2 & 1 & & & & & \\
& 1 & -2 & 1 & & & & \\
& & 1 & -2 & 1 & & & \\
& & & 1 & -2 & 1 & 1 & \\
& & & & 1 & -2 & 0 & \\
& & & & 1 & 0 & -2 & 1 \\
& & & & & & 1 & -2
\end{array}\right)
$$

Remark. Aside on Milnor's theorem: any even unimodular lattice of signature (m, n) for $m, n>0$ is isomorphic to a sum of copies of U and E_{8} or U and
$E_{8}(-1)$, with $E_{8} \oplus E_{8}(-1) \cong U^{8}$. Any odd unimodular lattice of signature (m, n) is isomorphic to $1^{m} \oplus\langle-1\rangle^{n}$.

Now, $H^{2}(X, \mathbb{Z}) \otimes \mathbb{C}=H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$ is the Hodge decomposition, and the image of $N S(X)$ lies in the $H^{1,1}$ subspace (in fact, is $H^{1,1} \cap H^{2}(X, \mathbb{Z})$ via the Lefschetz (1,1)-theorem). More generally, the Hodge conjecture states that, for a smooth variety X / \mathbb{C} of dimension $d, H^{p p} \cap H^{2 p}(X, \mathbb{Z})$ is generated by algebraic classes for all $p \leq d$. The regular 2-form lies in $H^{2,0}=H^{0}\left(X, \Omega^{2}\right)$. It pairs to 0 with all algebraic classes. The space $H^{2}(X, \mathbb{R}) \cap\left(H^{2,0} \cap H^{0,2}\right)$ has signature $(0,2)$. Thus, $H_{R}^{1,1}=H^{1,1} \cap H^{2}(X, \mathbb{R})$ has signature $(1,19)$ i.e. it's a Lorentzian space. In it we can consider $\left\{x \in H_{\mathbb{R}}^{1,1} \mid x^{2}>0\right\}$, which contains 2 components, V^{+}, V^{-} where V^{+}is the component containing the ample divisor. It is partitioned into chambers under the action of the Weyl group, which is generated by reflections in the hyperplanes orthogonal to the roots, $\Delta(X)=\left\{x \in H_{\mathbb{Z}}^{1,1} \mid x^{2}=-2\right\}$. The fundamental chamber containing the Kähler form or ample divisor class is called the Kähler cone C_{X}^{-}. It is the set of elements in the positive cone that have positive intersection with any nonzero effective divisor class.

Next, note that any isomorphism $X \rightarrow X^{\prime}$ of $K 3$ surfaces determines an effective Hodge isometry $H^{2}\left(X^{\prime}, \mathbb{Z}\right) \rightarrow H^{2}(X, \mathbb{Z})$, i.e. one which respects the Hodge decomposition, sends $V^{+}\left(X^{\prime}\right) \rightarrow V^{+}(X)$, and sends effective divisor classes to effective divisor classes (i.e. sends $C_{X^{\prime}}^{+} \rightarrow C_{X}^{+}$).

Theorem 1 (Strong Torelli). An effective Hodge isometry $\phi: H^{2}\left(X^{\prime}, \mathbb{Z}\right) \rightarrow$ $H^{2}(X, \mathbb{Z})$ induces a unique isometry $f: X \rightarrow X^{\prime}$ s.t. $\phi=f^{*}$.

Period map: given X, we have $\left[\omega_{X}\right] \in \mathbb{P}\left(L_{K 3} \otimes \mathbb{C}\right) \cong \mathbb{P}^{21}$ and $\omega_{X}^{2}=0$, $\omega_{X} \cdot \bar{\omega}_{X}>0$ by Hodge theory. This gives a point in a complex open subset of a quadric in \mathbb{P}^{21}, which is some 20-dimensional domain Ω. By Todorov, the period map is surjective. By Siu, every $K 3$ surface is Kähler. The moduli space of all $K 3$ is 20 dimensional, while the algebraic $K 3\left(K 3+\mathcal{L}\right.$ with $\left.\mathcal{L}^{2}=d\right)$ have 19 moduli, and the moduli space is a countable union of 19-dimensional spaces. See Pitaetski-Shapiro and Shafarevich, A Torelli Theorem for Algebraic K3 Surfaces for details.
1.3. Elliptic fibrations. A $K 3$ surface has an elliptic fibration iff \exists a vector $v \in N S(X)$ with $v^{2}=0, v \neq 0$. Idea: let v correspond to a line bundle L. Now apply Riemann-Roch to get

$$
\begin{equation*}
h^{0}(L)-h^{1}(L)+h^{2}(L)=\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} L(L-K)=\chi\left(\mathcal{O}_{X}\right)=2 \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
h^{2}(L)=h^{0}(K-L)=h^{0}(-L)=0 \tag{5}
\end{equation*}
$$

This implies that L or $-L$ is effective. Assume WLOG L is effective (otherwise, replace v by $-v$), represented by a divisor D. Then $h^{0}(L) \geq 2$. In fact, $0 \rightarrow$ $\mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{D}(D) \rightarrow 0$ gives
(6) $0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(D)\right) \rightarrow H^{0}\left(D, \mathcal{O}_{D}(D)\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)=0$
implying that $h^{0}(\mathcal{L})=2$. Thus, we get a map $X \rightarrow \mathbb{P}^{1}$, and the fiber has class $v, F^{2}=0$. Since $2 g(F)-2=F(F+K)=0, g(F)=1$. By Bertini, the general fiber is irreducible and smooth. This gives us an elliptic fibration. If we want a section, look for a class of an effective divisor O s.t. $O \cdot F=1$.

