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ALGEBRAIC SURFACES, LECTURE 18 

LECTURES: ABHINAV KUMAR 

Let X be as from last time, i.e. equipped with maps f : X B, g : X P1 .→ →
Assume char(k) =� 2, 3 and let S = {c ∈ P1|Fc is multiple}. If c ∈ P1 � S, fc : 
Fc
� → B is an étale morphism. Then we have the map fc 

∗ : Pic 0(B) → Pic 0(Fc
�), 

and Pic 0(F �) acts canonically on F �. Thus, we get an action B × F � F � forc c c c 
each c ∈ P1 � S, and thus actions 

→ 

(1) σ0 : B × g−1(P1 × S) → g−1(P1 � S), σ : B × X → X 

Explicitly, if b ∈ B, x ∈ F � ⊂ X with c ∈ P1 � S, then b X = y, wherec · 
f ∗OB(b − b0) ⊗ OF �(s) = OF �(y). Here b0 is a fixed base point on B, which 

c c 

acts as the zero element of the elliptic curve B. Apply the norm NFc
�|B to get 

OB(nb − nb0 + f(x)) − OB (f(y)) where n = deg fc = Fb Fc
�. We thus obtain· 

commutative diagrams 

b 
X �� X 

f(2) f 

B �� B 
tnb 

(where tnb is translation by nb) and 

σ 
B × X �� X 

(3) idB ×f f 

B × B 
(b,b�)�→nb+b� 

�� B


Let B0 = Fb0 and An = Ker nB : B B a group subscheme of B. We see that
→
the fibers of f are invariant under the action of An on X. In particular, An acts 
on B0. Denote this by α : An Aut (B0), where Aut (B0) is the group scheme→
of automorphisms of B0. The action of B on X gives τ : B × B0 X, which→
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2 LECTURES: ABHINAV KUMAR 

completes the diagram 

τ 

(4)	

B × B
�0 
�������� 

�� X 

f 
nB ◦pr1 

B 

Note that we can’t use b0 for an arbitrary element of B0, since we already used 
it for a base point of B0. So replace it by b ∈ B and b� ∈ B0. On can check 
that τ(b, x) = τ(b�, x�) ⇔ σ(b − b�, x) = x�. Thus, X is isomorphic to the 
quotient of B × B0 by the action of An given by a (b, b�) = (b + a, α(a)(b�)) for· 
a ∈ An, b ∈ B, b� ∈ B0. We can substitute the curve B/Ker (α) for B to get the 
following theorem: 

Theorem 1. Every hyperelliptic surface X has the form X = B1 × B0/A, where 
B0, B1 are elliptic curves, A is a finite group subscheme of B1, and A acts on 
the product B1 × B0 by a(b, b�) = (b + a, α(a)(b�)) for a ∈ A, b ∈ B1, b

� ∈ B0, and 
α : A Aut (B0) an injective homomorphism. The two elliptic fibrations of X→ 
are given by 

f : B1 × B0/A → B1/A = B, g : B1 × B0/A → = P1(5)	 B0/α(A) ∼

We can classify these, using the structure of a group of automorphisms of an 
elliptic curve Aut (B0) = B0 � Aut (B0, 0) (the group of translations and the 
group of automorphisms fixing 0 respectively). Explicitly, we have that ⎧ ⎨ Z/2Z j(B0) = 0, 1728�	

2 3(6)	 Aut (B0, 0) ∼ Z/4Z j(B0) = 1728, i.e. B0 
∼ = x= ⎩ 
= {y

2 3 
− x}

Z/6Z j(B0) = 0, i.e. B0 
∼ = x= {y − 1} 

Now α(A) can’t be a subgroup of translations, else B0/α(A) would be an 
elliptic curve, not P1 . Let α ∈ A be s.t. α(a) generates the cyclic group α(A) 
in Aut (B0)/B0 = Aut (B0, 0). It is easy to see that α(a) must have a fixed∼
point. Choose that point to be the zero point of B0. Now α(A) is abelian, so 
is a direct product A0 × Z/nZ. A0 is a subgroup of translations of B0 and thus 
a finite subgroup scheme of B0. Since A0 and α(A) commute, we must have 
A0 ⊂ {b� ∈ B0|α(a)(b�) = b�}. We thus have the following possibilities: 

(a) n = 2 = the fixed points are Z/2Z × Z/2Z 
(b) n = 3 = 

⇒ 
the fixed points are Z/3Z 

(c) n = 4 = 
⇒ 

the fixed points are Z/2Z⇒
(d) n = 6 = the fixed points are {0}⇒ 

We thus obtain the following classification (Bagnera-de Franchis): 

(a1) (B1×B0)/(Z/2Z), with the generator a of Z/2Z ⊂ B1[2] acting on B1 ×B0 

by a(b1, b0) = (b1 + a, −b0). 
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(a2) (B1 × B0)/(Z/2Z)2, with the generators a and g of (Z/2Z)2 ⊂ (B1[2])2 

acting by a(b1, b0) = (b1 + a, −b0), g(b1, b0) = (b1 + g, b0 + c) for c ∈ B0[2]. 
(b1) (B1 ×B0)/(Z/3Z), with the generator a of Z/3Z = B1[3] (s.t. α(a) = ω ∈

Aut (B0, 0) an automorphism of order 3 [only when j(B0) = 0]) acting on 
B1 × B0 by a(b1, b0) = (b1 + a, ω(b0)). 

(b2) (B1 × B0)/(Z/3Z)2, with the generators a and g of (Z/3Z)2 = (B1[3])2 

acting by a(b1, b0) = (b1 +a, ω(b0)), g(b1, b0) = (b1 +g, b0 +c) for c ∈ B0[3], 
is fixed by ω, i.e. ω(c) = c. 

(c1) (B1 × B0)/(Z/4Z), with the generator a of Z/4Z ⊂ B1[4] (s.t. α(a) = 
i ∈ Aut (B0, 0) an automorphism of order 4 [only when j(B0) = 1728]) 
acting on B1 × B0 by a(b1, b0) = (b1 + a, i(b0)). 

(c2) (B1 ×B0)/(Z/4Z×Z/2Z), with the generators a and g of Z/4Z×Z/2Z = 
B1[4] × B1[2] acting by a(b1, b0) = (b1 + a, i(b0)), g(b1, b0) = (b1 + g, b0 + c) 
for c ∈ B0[2]. 

(d) (B1×B0)/(Z/6Z), with the generator a of Z/6Z = B1[6] acting on B1 ×B0 

by a(b1, b0) = (b1 + a, −ω(b0)). 

1. Classification (contd.) 

Our first goal is to prove the following theorem: 

Theorem 2. Let X be a minimal surface. Then 

(a)	∃ an integral curve C on X s.t. K · C < 0 ⇔ κ(X) = −∞ ⇔ pg = p0 = 
0 p12 = 0.⇔

(b)	 K · C = 0 for all integral curves C on X (i.e. K ≡ 0) ⇔ κ(X) = 0 ⇔
4K ∼ 0 or 6K ∼ 0 12K ∼ 0.⇔

(c)	 K2 = 0, K C ≥ 0 for all integral curves C on X, and ∃ an integral curve · 
C � with K · C � > 0 ⇔ κ(X) = 1 ⇔ K2 = 0, |4K| or |6K| contains a 
strictly positive divisor ⇔ K2 = 0, |12K| has a strictly positive divisor. 

(d) K2 > 0, K · C ≥ 0 for all integral curves C on X ⇔ κ(X) = 2, in which 
case |2K| = ∅. 

We already showed that the 4 classes (given by the first clause) are exhaustive 
and mutually exclusive. We also proved the equivalences in (a). As a pre
liminary, we need some results�on elliptic and quasielliptic fibrations. Recall 
that an effective divisor D = i

r 
=1 niEi > 0 is said to be of canonical type if 

Ki · Ei = D · Ei = 0 ∀ i (if X → B is an elliptic/quasielliptic fibration, then every 
fiber has this property). If D is also connected and gcd(n1, . . . , nr) = 1, then we 
say that D is an indecomposable curve or a divisor of canonical type. 

Proposition 1. Let D = niEi > 0 be an indecomposable curve of canonical 
type on a minimal surface X, and let L be an invertible OD module. If deg (L ⊗

) = 0 for all i, then H0(D, L) = 0 iff L ∼ Also, H0(D, OD) ∼OEi	 � = OD. = k. 
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4 LECTURES: ABHINAV KUMAR 

Proof. It is enough to show that every nonzero section s of H0(D, L) generates 
L, i.e. gives an isomorphism OD = L. Then H0(D, OD) is a field containing k∼
and is finite dimensional over k. Since k is algebraically closed by assumption, 
we have the proposition. So let s ∈ H0(D, L) be nonzero, and let si = s Ei 

H0(Ei, L ⊗ OEi ). The fact that deg (L ⊗ OEi ) = 0 implies that either 
|
si is
∈ 

identically 0 on Ei or si doesn’t vanish anywhere on Ei (i.e. it generates L⊗OEi ). 
If si is identically 0 on Ei, then sj must be 0 on Ei for every Ej that intersects 
Ei. This implies that sj vanishes at a point of Ej and thus on all of Ej for all j 
by the connectedness of D. So if s doesn’t vanish identically on Ei for all i, then 
s doesn’t vanish anywhere on D, and we again have the desired isomorphism. 

So suppose that si is identically 0 on Ei for every i. We’ll show that s = 0 
gives a contradiction. Let ki be the order of vanishing of si along Ei, 1 ≤ k ≤ ni. 
Whenever ki < ni, s defines a nonzero section of L⊗OX (−kiEi)/OX ((−ki+1)Ei). 
We claim that this section vanishes at every point p ∈ Ei to order at least 
the intersection multiplicity (Ei, j kj Ej ; p). To see this, note that locally,=i 
if Ei only intersects one component Ej , j =� i at p, we can let A = OX,p and 
ti = 0, tj = 0 cut out Ei and Ej respectively at p. We obtain an exact sequence 

(7) 

H0(L) 

0 H0(Ei, L ⊗OX (−kiEi) ⊗OEi ) H0(L ⊗O(ki+1)Ei ) H0(L ⊗OkiEi ) 

from the exact sequence 

(8) 0 → OX (−kiEi) ⊗OEi → O(ki+1)Ei → OkiEi → 0 

after tensoring by L. The local version is 

s ∈ A/(tni t nj )i j 

(9) 

0 A/ti A/tki 
i+1 A/tki 

i 0→ 

We can write s = tki 
i αi = t kj 

j αj, αi, αj ∈ A since the order of vanishing of s along 

ti is ki. Since ti, tj is an A-regular sequence, we get αi = ti
kj β, αj = ti

ki β, for some 
β ∈ A. The section s is represented by 

(10) tki 
i t kj 

j β = t kj 
j β mod ti 

in A/ti to the left of the diagram. Then 

(11) ord P (tj
kj β) = dim (A/(ti, tj

kj β) ≥ dim (A/(ti, tj
kj ) = int.mult.(Ei, kj Ej ; P ) 
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In general, one can use the Chinese remainder theorem to get the inequality for 
many points P . So if ki < ni then we have 

(ti, kj Ej ) ≤ deg Ei(L ⊗OX (−kiEi) ⊗OEi ) 
(12) j=� i 

≤ deg (OX (−Ei)/OX (−2Ei))
ki = −kiEi 

2 ≤ 0 

On the other hand, if ki = ni, then Ei · D = 0 gives Ei · kj Ej = −(Ei, (nj −
kj )Ej ) ≤ 0 since kj ≤ nj and Ei Ej ≥ 0. So letting D1 = kjEj , we have · 
D1 · Ei ≤ 0 for all i. But 

(D1, D) = ki(Ei, D) = 0 

= D1 · Ei = 0 ∀ i⇒ 

= D1
2 = 0 ⇒

(13) = D1 is a rational multiple of D⇒ 

= D1 = D⇒ 

= ki = ni ∀ i (since ki ≤ ni and gcd({ni}) = 1) ⇒ 

= ⇒ s ≡ 0 

a contradiction. � 


