MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 18

LECTURES: ABHINAV KUMAR

Let X be as from last time, i.e. equipped with maps $f: X \rightarrow B, g: X \rightarrow \mathbb{P}^{1}$. Assume $\operatorname{char}(k) \neq 2,3$ and let $S=\left\{c \in \mathbb{P}^{1} \mid F_{c}\right.$ is multiple $\}$. If $c \in \mathbb{P}^{1} \backslash S, f_{c}$: $F_{c}^{\prime} \rightarrow B$ is an étale morphism. Then we have the map $f_{c}^{*}: \operatorname{Pic}^{0}(B) \rightarrow \operatorname{Pic}^{0}\left(F_{c}^{\prime}\right)$, and $\operatorname{Pic}^{0}\left(F_{c}^{\prime}\right)$ acts canonically on F_{c}^{\prime}. Thus, we get an action $B \times F_{c}^{\prime} \rightarrow F_{c}^{\prime}$ for each $c \in \mathbb{P}^{1} \backslash S$, and thus actions

$$
\begin{equation*}
\sigma_{0}: B \times g^{-1}\left(\mathbb{P}^{1} \times S\right) \rightarrow g^{-1}\left(\mathbb{P}^{1} \backslash S\right), \sigma: B \times X \rightarrow X \tag{1}
\end{equation*}
$$

Explicitly, if $b \in B, x \in F_{c}^{\prime} \subset X$ with $c \in \mathbb{P}^{1} \backslash S$, then $b \cdot X=y$, where $f^{*} \mathcal{O}_{B}\left(b-b_{0}\right) \otimes \mathcal{O}_{F_{c}^{\prime}}(s)=\mathcal{O}_{F_{c}^{\prime}}(y)$. Here b_{0} is a fixed base point on B, which acts as the zero element of the elliptic curve B. Apply the norm $N_{F_{c}^{\prime} \mid B}$ to get $\mathcal{O}_{B}\left(n b-n b_{0}+f(x)\right)-\mathcal{O}_{B}(f(y))$ where $n=\operatorname{deg} f_{c}=F_{b} \cdot F_{c}^{\prime}$. We thus obtain commutative diagrams

(where $t_{n b}$ is translation by $n b$) and

Let $B_{0}=F_{b_{0}}$ and $A_{n}=\operatorname{Ker} n_{B}: B \rightarrow B$ a group subscheme of B. We see that the fibers of f are invariant under the action of A_{n} on X. In particular, A_{n} acts on B_{0}. Denote this by $\alpha: A_{n} \rightarrow$ Aut $\left(B_{0}\right)$, where $\operatorname{Aut}\left(B_{0}\right)$ is the group scheme of automorphisms of B_{0}. The action of B on X gives $\tau: B \times B_{0} \rightarrow X$, which
completes the diagram

Note that we can't use b_{0} for an arbitrary element of B_{0}, since we already used it for a base point of B_{0}. So replace it by $b \in B$ and $b^{\prime} \in B_{0}$. On can check that $\tau(b, x)=\tau\left(b^{\prime}, x^{\prime}\right) \Leftrightarrow \sigma\left(b-b^{\prime}, x\right)=x^{\prime}$. Thus, X is isomorphic to the quotient of $B \times B_{0}$ by the action of A_{n} given by $a \cdot\left(b, b^{\prime}\right)=\left(b+a, \alpha(a)\left(b^{\prime}\right)\right)$ for $a \in A_{n}, b \in B, b^{\prime} \in B_{0}$. We can substitute the curve $B / \operatorname{Ker}(\alpha)$ for B to get the following theorem:

Theorem 1. Every hyperelliptic surface X has the form $X=B_{1} \times B_{0} / A$, where B_{0}, B_{1} are elliptic curves, A is a finite group subscheme of B_{1}, and A acts on the product $B_{1} \times B_{0}$ by $a\left(b, b^{\prime}\right)=\left(b+a, \alpha(a)\left(b^{\prime}\right)\right)$ for $a \in A, b \in B_{1}, b^{\prime} \in B_{0}$, and $\alpha: A \rightarrow$ Aut $\left(B_{0}\right)$ an injective homomorphism. The two elliptic fibrations of X are given by

$$
\begin{equation*}
f: B_{1} \times B_{0} / A \rightarrow B_{1} / A=B, g: B_{1} \times B_{0} / A \rightarrow B_{0} / \alpha(A) \cong \mathbb{P}^{1} \tag{5}
\end{equation*}
$$

We can classify these, using the structure of a group of automorphisms of an elliptic curve $\operatorname{Aut}\left(B_{0}\right)=B_{0} \rtimes \operatorname{Aut}\left(B_{0}, 0\right)$ (the group of translations and the group of automorphisms fixing 0 respectively). Explicitly, we have that

$$
\operatorname{Aut}\left(B_{0}, 0\right) \cong\left\{\begin{array}{ccc}
\mathbb{Z} / 2 \mathbb{Z} & j\left(B_{0}\right) \neq 0,1728 \tag{6}\\
\mathbb{Z} / 4 \mathbb{Z} & j\left(B_{0}\right)=1728, & \text { i.e. } B_{0} \cong\left\{y^{2}=x^{3}-x\right\} \\
\mathbb{Z} / 6 \mathbb{Z} & j\left(B_{0}\right)=0, & \text { i.e. } B_{0} \cong\left\{y^{2}=x^{3}-1\right\}
\end{array}\right.
$$

Now $\alpha(A)$ can't be a subgroup of translations, else $B_{0} / \alpha(A)$ would be an elliptic curve, not \mathbb{P}^{1}. Let $\alpha \in A$ be s.t. $\alpha(a)$ generates the cyclic group $\overline{\alpha(A)}$ in $\operatorname{Aut}\left(B_{0}\right) / B_{0} \cong \operatorname{Aut}\left(B_{0}, 0\right)$. It is easy to see that $\alpha(a)$ must have a fixed point. Choose that point to be the zero point of B_{0}. Now $\alpha(A)$ is abelian, so is a direct product $A_{0} \times \mathbb{Z} / n \mathbb{Z} . A_{0}$ is a subgroup of translations of B_{0} and thus a finite subgroup scheme of B_{0}. Since A_{0} and $\alpha(A)$ commute, we must have $A_{0} \subset\left\{b^{\prime} \in B_{0} \mid \alpha(a)\left(b^{\prime}\right)=b^{\prime}\right\}$. We thus have the following possibilities:
(a) $n=2 \Longrightarrow$ the fixed points are $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
(b) $n=3 \Longrightarrow$ the fixed points are $\mathbb{Z} / 3 \mathbb{Z}$
(c) $n=4 \Longrightarrow$ the fixed points are $\mathbb{Z} / 2 \mathbb{Z}$
(d) $n=6 \Longrightarrow$ the fixed points are $\{0\}$

We thus obtain the following classification (Bagnera-de Franchis):
(a1) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 2 \mathbb{Z})$, with the generator a of $\mathbb{Z} / 2 \mathbb{Z} \subset B_{1}[2]$ acting on $B_{1} \times B_{0}$ by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a,-b_{0}\right)$.
(a2) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 2 \mathbb{Z})^{2}$, with the generators a and g of $(\mathbb{Z} / 2 \mathbb{Z})^{2} \subset\left(B_{1}[2]\right)^{2}$ acting by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a,-b_{0}\right), g\left(b_{1}, b_{0}\right)=\left(b_{1}+g, b_{0}+c\right)$ for $c \in B_{0}[2]$.
(b1) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 3 \mathbb{Z})$, with the generator a of $\mathbb{Z} / 3 \mathbb{Z}=B_{1}[3]$ (s.t. $\alpha(a)=\omega \in$ Aut $\left(B_{0}, 0\right)$ an automorphism of order 3 [only when $j\left(B_{0}\right)=0$]) acting on $B_{1} \times B_{0}$ by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a, \omega\left(b_{0}\right)\right)$.
(b2) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 3 \mathbb{Z})^{2}$, with the generators a and g of $(\mathbb{Z} / 3 \mathbb{Z})^{2}=\left(B_{1}[3]\right)^{2}$ acting by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a, \omega\left(b_{0}\right)\right), g\left(b_{1}, b_{0}\right)=\left(b_{1}+g, b_{0}+c\right)$ for $c \in B_{0}[3]$, is fixed by ω, i.e. $\omega(c)=c$.
(c1) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 4 \mathbb{Z})$, with the generator a of $\mathbb{Z} / 4 \mathbb{Z} \subset B_{1}[4]$ (s.t. $\alpha(a)=$ $i \in \operatorname{Aut}\left(B_{0}, 0\right)$ an automorphism of order 4 [only when $j\left(B_{0}\right)=1728$]) acting on $B_{1} \times B_{0}$ by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a, i\left(b_{0}\right)\right)$.
(c2) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z})$, with the generators a and g of $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=$ $B_{1}[4] \times B_{1}[2]$ acting by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a, i\left(b_{0}\right)\right), g\left(b_{1}, b_{0}\right)=\left(b_{1}+g, b_{0}+c\right)$ for $c \in B_{0}[2]$.
(d) $\left(B_{1} \times B_{0}\right) /(\mathbb{Z} / 6 \mathbb{Z})$, with the generator a of $\mathbb{Z} / 6 \mathbb{Z}=B_{1}[6]$ acting on $B_{1} \times B_{0}$ by $a\left(b_{1}, b_{0}\right)=\left(b_{1}+a,-\omega\left(b_{0}\right)\right)$.

1. Classification (Contd.)

Our first goal is to prove the following theorem:
Theorem 2. Let X be a minimal surface. Then
(a) \exists an integral curve C on X s.t. $K \cdot C<0 \Leftrightarrow \kappa(X)=-\infty \Leftrightarrow p_{g}=p_{0}=$ $0 \Leftrightarrow p_{12}=0$.
(b) $K \cdot C=0$ for all integral curves C on X (i.e. $K \equiv 0$) $\Leftrightarrow \kappa(X)=0 \Leftrightarrow$ $4 K \sim 0$ or $6 K \sim 0 \Leftrightarrow 12 K \sim 0$.
(c) $K^{2}=0, K \cdot C \geq 0$ for all integral curves C on X, and \exists an integral curve C^{\prime} with $K \cdot C^{\prime}>0 \Leftrightarrow \kappa(X)=1 \Leftrightarrow K^{2}=0,|4 K|$ or $|6 K|$ contains a strictly positive divisor $\Leftrightarrow K^{2}=0,|12 K|$ has a strictly positive divisor.
(d) $K^{2}>0, K \cdot C \geq 0$ for all integral curves C on $X \Leftrightarrow \kappa(X)=2$, in which case $|2 K|=\varnothing$.

We already showed that the 4 classes (given by the first clause) are exhaustive and mutually exclusive. We also proved the equivalences in (a). As a preliminary, we need some results on elliptic and quasielliptic fibrations. Recall that an effective divisor $D=\sum_{i=1}^{r} n_{i} E_{i}>0$ is said to be of canonical type if $K_{i} \cdot E_{i}=D \cdot E_{i}=0 \forall i$ (if $X \rightarrow B$ is an elliptic/quasielliptic fibration, then every fiber has this property). If D is also connected and $\operatorname{gcd}\left(n_{1}, \ldots, n_{r}\right)=1$, then we say that D is an indecomposable curve or a divisor of canonical type.

Proposition 1. Let $D=\sum n_{i} E_{i}>0$ be an indecomposable curve of canonical type on a minimal surface X, and let L be an invertible \mathcal{O}_{D} module. If $\operatorname{deg}(L \otimes$ $\left.\mathcal{O}_{E_{i}}\right)=0$ for all i, then $H^{0}(D, L) \neq 0$ iff $L \cong \mathcal{O}_{D}$. Also, $H^{0}\left(D, \mathcal{O}_{D}\right) \cong k$.

Proof. It is enough to show that every nonzero section s of $H^{0}(D, L)$ generates L, i.e. gives an isomorphism $\mathcal{O}_{D} \cong L$. Then $H^{0}\left(D, \mathcal{O}_{D}\right)$ is a field containing k and is finite dimensional over k. Since k is algebraically closed by assumption, we have the proposition. So let $s \in H^{0}(D, L)$ be nonzero, and let $s_{i}=\left.s\right|_{E_{i}} \in$ $H^{0}\left(E_{i}, L \otimes \mathcal{O}_{E_{i}}\right)$. The fact that $\operatorname{deg}\left(L \otimes \mathcal{O}_{E_{i}}\right)=0$ implies that either s_{i} is identically 0 on E_{i} or s_{i} doesn't vanish anywhere on E_{i} (i.e. it generates $L \otimes \mathcal{O}_{E_{i}}$). If s_{i} is identically 0 on E_{i}, then s_{j} must be 0 on E_{i} for every E_{j} that intersects E_{i}. This implies that s_{j} vanishes at a point of E_{j} and thus on all of E_{j} for all j by the connectedness of D. So if s doesn't vanish identically on E_{i} for all i, then s doesn't vanish anywhere on D, and we again have the desired isomorphism.

So suppose that s_{i} is identically 0 on E_{i} for every i. We'll show that $s \neq 0$ gives a contradiction. Let k_{i} be the order of vanishing of s_{i} along $E_{i}, 1 \leq k \leq n_{i}$. Whenever $k_{i}<n_{i}$, s defines a nonzero section of $L \otimes \mathcal{O}_{X}\left(-k_{i} E_{i}\right) / \mathcal{O}_{X}\left(\left(-k_{i}+1\right) E_{i}\right)$. We claim that this section vanishes at every point $p \in E_{i}$ to order at least the intersection multiplicity $\left(E_{i}, \sum_{j \neq i} k_{j} E_{j} ; p\right)$. To see this, note that locally, if E_{i} only intersects one component $E_{j}, j \neq i$ at p, we can let $A=\mathcal{O}_{X, p}$ and $t_{i}=0, t_{j}=0$ cut out E_{i} and E_{j} respectively at p. We obtain an exact sequence

from the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}\left(-k_{i} E_{i}\right) \otimes \mathcal{O}_{E_{i}} \rightarrow \mathcal{O}_{\left(k_{i}+1\right) E_{i}} \rightarrow \mathcal{O}_{k_{i} E_{i}} \rightarrow 0 \tag{8}
\end{equation*}
$$

after tensoring by L. The local version is

We can write $s=t_{i}^{k_{i}} \alpha_{i}=t_{j}^{k_{j}} \alpha_{j}, \alpha_{i}, \alpha_{j} \in A$ since the order of vanishing of s along t_{i} is k_{i}. Since t_{i}, t_{j} is an A-regular sequence, we get $\alpha_{i}=t_{i}^{k_{j}} \beta, \alpha_{j}=t_{i}^{k_{i}} \beta$, for some $\beta \in A$. The section s is represented by

$$
\begin{equation*}
t_{i}^{k_{i}} t_{j}^{k_{j}} \beta=t_{j}^{k_{j}} \beta \quad \bmod t_{i} \tag{10}
\end{equation*}
$$

in A / t_{i} to the left of the diagram. Then

$$
\begin{equation*}
\operatorname{ord}_{P}\left(t_{j}^{k_{j}} \beta\right)=\operatorname{dim}\left(A /\left(t_{i}, t_{j}^{k_{j}} \beta\right) \geq \operatorname{dim}\left(A /\left(t_{i}, t_{j}^{k_{j}}\right)=\operatorname{int.mult.}\left(E_{i}, k_{j} E_{j} ; P\right)\right.\right. \tag{11}
\end{equation*}
$$

In general, one can use the Chinese remainder theorem to get the inequality for many points P. So if $k_{i}<n_{i}$ then we have

$$
\begin{align*}
\left(t_{i}, \sum_{j \neq i} k_{j} E_{j}\right) & \leq \operatorname{deg} E_{i}\left(L \otimes \mathcal{O}_{X}\left(-k_{i} E_{i}\right) \otimes \mathcal{O}_{E_{i}}\right) \tag{12}\\
& \leq \operatorname{deg}\left(\mathcal{O}_{X}\left(-E_{i}\right) / \mathcal{O}_{X}\left(-2 E_{i}\right)\right)^{k_{i}}=-k_{i} E_{i}^{2} \leq 0
\end{align*}
$$

On the other hand, if $k_{i}=n_{i}$, then $E_{i} \cdot D=0$ gives $E_{i} \cdot \sum k_{j} E_{j}=-\left(E_{i}, \sum\left(n_{j}-\right.\right.$ $\left.\left.k_{j}\right) E_{j}\right) \leq 0$ since $k_{j} \leq n_{j}$ and $E_{i} \cdot E_{j} \geq 0$. So letting $D_{1}=\sum k_{j} E_{j}$, we have $D_{1} \cdot E_{i} \leq 0$ for all i. But

$$
\begin{align*}
\left(D_{1}, D\right) & =\sum k_{i}\left(E_{i}, D\right)=0 \\
& \Longrightarrow D_{1} \cdot E_{i}=0 \forall i \\
& \Longrightarrow D_{1}^{2}=0 \\
& \Longrightarrow D_{1} \text { is a rational multiple of } D \tag{13}\\
& \Longrightarrow D_{1}=D \\
& \Longrightarrow k_{i}=n_{i} \forall i\left(\text { since } k_{i} \leq n_{i} \text { and } \operatorname{gcd}\left(\left\{n_{i}\right\}\right)=1\right) \\
& \Longrightarrow s \equiv 0
\end{align*}
$$

a contradiction.

