MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 19

LECTURES: ABHINAV KUMAR

Corollary 1. If D is an indecomposable curve of canonical type (icoct), then $\omega_{D} \cong \mathcal{O}_{D}$, where ω_{D} is the dualizing sheaf of D.
Proof. By Serre duality, $h^{1}\left(\omega_{D}\right)=h^{0}\left(\mathcal{O}_{D}\right)=0$. We have the short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(K) \rightarrow \mathcal{O}_{X}(K+D) \rightarrow \omega_{D} \rightarrow 0 \tag{1}
\end{equation*}
$$

so $\chi\left(\omega_{D}\right)=\chi\left(\mathcal{O}_{X}(K+D)\right)-\chi\left(\mathcal{O}_{X}(K)\right)=\frac{1}{2}((K+D) \cdot D)=0$ by Riemann-Roch (using $D^{2}=0$ and $D \cdot K=0$). Thus, $h^{0}\left(\omega_{D}\right)=1$. Since ω_{D} has degree 0 along the E_{i},

$$
\begin{equation*}
\operatorname{deg}_{E_{i}}\left(\mathcal{O}_{D} \otimes \mathcal{O}_{X}(K+D) \otimes \mathcal{O}_{E_{i}}\right)=(K+D) \cdot E_{i}=0 \tag{2}
\end{equation*}
$$

It follows from the proposition last time that $\omega_{D} \cong \mathcal{O}_{D}$.
Corollary 2. If $D=\sum n_{i} E_{i}$ is an icoct, D^{\prime} an effective divisor on X s.t. $D^{\prime} \cdot E_{i}=0$ for all i, then $D^{\prime}=n D+D^{\prime \prime}$ where $n \geq 0, D^{\prime \prime}$ an effective divisor disjoint from D.

Proof. Let n be the largest integer s.t. $D^{\prime}-n D \geq 0$, and let $D^{\prime \prime}=D^{\prime}-n D, L=$ $\mathcal{O}_{D}\left(D^{\prime \prime}\right) . \exists$ an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}\left(D^{\prime \prime}-D\right) \rightarrow \mathcal{O}_{X}\left(D^{\prime \prime}\right) \rightarrow \mathcal{O}_{D}\left(D^{\prime \prime}\right)=L \rightarrow 0 \tag{3}
\end{equation*}
$$

Let $s \in H^{0}\left(X, \mathcal{O}_{X}\left(D^{\prime \prime}\right)\right)$ be s.t. $\operatorname{div}_{X}(s)=D^{\prime \prime}$. Since $D^{\prime \prime}-D=D-(n+1) D$ is not effective, s doesn't come from $H^{0}\left(\mathcal{O}_{X}\left(D^{\prime \prime}-D\right)\right.$), so its image in $H^{0}\left(\mathcal{O}_{D}\left(D^{\prime \prime}\right)\right)$ is nonzero. But $\operatorname{deg}\left(\left.L\right|_{E_{i}}\right)=D^{\prime \prime} \cdot E_{i}=\left(D^{\prime}-n D\right) \cdot E_{i}=0 \Longrightarrow L \cong \mathcal{O}_{D} \Longrightarrow$ $s(x) \neq 0 \forall x \in D$, so that the support of $D^{\prime \prime}$ must be disjoint from that of D.

Theorem 1. Let X be a minimal surface with $K^{2}=0$ and $K \cdot C \geq 0$ for all curves on X. If D is an icoct on X, \exists an elliptic or quasielliptic fibration $f: X \rightarrow B$ on X obtained from the Stein factorization of $\phi_{|n D|}: X \rightarrow \mathbb{P}\left(H^{0}\left(\mathcal{O}_{X}(n D)\right)^{\vee}\right)$ for some $n>0$.

Proof. Idea: use D and K to get an elliptic/quasielliptic fibration. Then show that the fiber must be a multiple of D.

Case 1: $p_{g}=0$. or $n \geq 0$, we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(n K+(n-1) D) \rightarrow \mathcal{O}_{X}(n K+n D) \rightarrow \mathcal{O}_{D} \rightarrow 0 \tag{4}
\end{equation*}
$$

obtained by tensoring $0 \rightarrow \mathcal{O}_{X}(-D) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0$ by $n(K+D)$ and using $\mathcal{O}_{X}(n K+n D) \otimes \mathcal{O}_{D} \cong \omega_{D}^{\otimes n} \cong \mathcal{O}_{D}$ since D is an icoct. We claim that

$$
H^{2}\left(\mathcal{O}_{X}(n K+(n-1) D)\right)=H^{0}(-(n-1)(K+D)) 0
$$

for $n \geq 2$. To see this, note that if $\Delta \in\left|\frac{m}{n}(K+D)\right|$ for $m>0$, then either $\Delta=0 \Longrightarrow m K \sim-m D \Longrightarrow K \cdot H=-D \cdot H<0$ for an ample divisor H, giving a contradiction, or $\Delta>0$ with a similar contradiction. Also, $H^{2}\left(\mathcal{O}_{D}\right)=2$ since D has support of dimension 1, implying that $H^{2}\left(\mathcal{O}_{X}(n K+n D)\right)=0$, and $H^{1}\left(\mathcal{O}_{D}\right)=H^{0}\left(\omega_{D}\right)=H^{0}\left(\mathcal{O}_{D}\right) \neq 0$ gives $H^{1}\left(\mathcal{O}_{X}(n K+n D)\right) \neq 0$. We know from Riemann-Roch that

$$
\begin{aligned}
\chi\left(\mathcal{O}_{X}(n K+n D)\right) & =\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2}(n K+n D)(n K+n D-K) \\
& =\chi\left(\mathcal{O}_{X}\right)=1-q
\end{aligned}
$$

(since $p_{g}=0$). Noether's formula states that

$$
12-12 q=12-12 q-12 p_{g}=K^{2}+2-2 b_{1}+b_{2}
$$

with $b_{1}=2 q$ since the irregularity $\Delta=0$ because $p_{g}=0$. So

$$
10-8 q=b_{2} \geq 1 \Longrightarrow q \leq 1 \Longrightarrow \chi\left(\mathcal{O}_{X}\right)=0,1
$$

and $\chi\left(\mathcal{O}_{X}(n K+n D)\right)=0$ or 1 for $n \geq 2$. Since $H^{1}\left(\mathcal{O}_{X}(n K+n D)\right) \neq 0$ and $H^{2}\left(\mathcal{O}_{X}(n K+n D)\right)=0$, we must have $H^{0}\left(\mathcal{O}_{X}(n K+n D)\right) \neq 0$ for $n \geq 2$. So $\exists D_{n} \in|n K+n D|$. As before, we see that $D_{n} \neq 0$.

We claim that D_{n} is of canonical type. Letting $D=\sum n_{i} E_{i}$, we find that

$$
D_{n} \cdot E_{i}=n\left(K \cdot E_{i}\right)+n\left(D \cdot E_{i}\right)=0
$$

This implies that $D_{n}=a D+\sum k_{j} F_{j}$ for some $a \geq 0, k_{j}>0$ integers, F_{j} distinct irreducible curves that don't intersect D. Now $K \cdot F_{j} \geq 0$, and by our hypothesis $\left(\sum k_{j} F_{j}\right) \cdot K \geq 0$. But it equals $K \cdot n K+n D-D=0$, so $K \cdot F_{j}=0$ for all j. Finally,

$$
D_{n} \cdot F_{j}=n\left(K \cdot F_{j}\right)+n\left(D \cdot F_{j}\right)=0
$$

so D_{n} is of canonical type.
Now, D_{n} can't be a multiple of D for all n, For then $D_{n}=m D \Longrightarrow$ $n K \sim \lambda_{n} D$ for some integer λ_{n} for each $n \geq 2 \Longrightarrow K=3 K \cdot 2 K$ is a multiple of D, say $\lambda \cdot D=K$. If $\lambda<0$, this contradicts $K \cdot H \geq 0$. If $\lambda \geq 0$, then $|K|=|\lambda D|=\varnothing$ which contradicts $p_{g}=0$. So \exists a curve of
canonical type D^{\prime} on X s.t. removing the multiple of D and decomposing to get an icoct, we get something disjoint from D. So let D^{\prime} be an icoct, disjoint from D. Then

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}\left(2 K+D+D^{\prime}\right) \rightarrow \mathcal{O}_{X}\left(2 K+2 D+2 D^{\prime}\right) \rightarrow \mathcal{O}_{D} \oplus \mathcal{O}_{D^{\prime}} \rightarrow 0 \tag{11}
\end{equation*}
$$

(using $\left.\omega_{D} \cong \mathcal{O}_{D}, \omega_{D^{\prime}} \cong \mathcal{O}_{D^{\prime}}\right)$. As before, we can show that $H^{2}\left(\mathcal{O}_{X}(2 K+\right.$ $\left.\left.D+D^{\prime}\right)\right)=0$, and therefore $H^{2}\left(\mathcal{O}_{X}\left(2 K+2 D+2 D^{\prime}\right)\right)=0$. So $\chi\left(\mathcal{O}_{X}(2 K+\right.$ $\left.\left.2 D+2 D^{\prime}\right)\right)=\chi\left(\mathcal{O}_{X}\right)=0$ or 1, while $h^{1}\left(\mathcal{O}_{X}\left(2 K+2 D+{ }_{2} D^{\prime}\right)\right) \geq 2$ (because $\left.h^{1}\left(\mathcal{O}_{D}\right), h^{1}\left(\mathcal{O}_{D^{\prime}}\right) \geq 1\right)$ implies that $h^{0}\left(\mathcal{O}_{X}\left(2 K+2 D+2 D^{\prime}\right)\right) \geq 0$. Now, take

$$
\begin{equation*}
\Delta \in\left|2 K+2 D+2 D^{\prime}\right|, \Delta>0, \Delta^{2}=0, \operatorname{dim}|\Delta| \geq 1 \tag{12}
\end{equation*}
$$

Since D, D^{\prime} are of canonical type, so is Δ (easy exercise).
We now claim that $|\Delta|$ is composed with a pencil (i.e. it gives a map to a curve). To see this, let C be the fixed part of $|\Delta|$, then since Δ is of canonical type, we get $(\Delta-C)^{2} \leq 0$ (the self-intersection of a divisor supported on a curve of canonical type is ≤ 0). So the rational map

$$
\begin{equation*}
\phi_{|\Delta|}: X \rightarrow \phi_{|\Delta|}(X)=B \subset|\Delta| \tag{13}
\end{equation*}
$$

is defined everywhere (else would have $(\Delta-C)^{2}>0$. Use $C_{1} \cdot C_{2}=\tilde{C}_{1} \cdot \tilde{C}_{2}+$ $m_{1} m_{2}$ for a single blowup at p if C_{1}, C_{2} pass through p with multiplicity m_{1}, m_{2} and apply to two elements of $\overline{\Delta-C}$ with zero intersection after the blowup). Since $\operatorname{dim}|\Delta| \geq 1, B$ can't be a point. And it can't be a surface, else we would have $\Delta \backslash C=\phi^{*}(H) \Longrightarrow\left((\Delta-C)^{2}\right)>0$. So Δ is composed with a pencil and $\phi_{|\Delta|}$ is a morphism. Now $\Delta \cdot D=$ $D \cdot\left(2 K+2 D+2 D^{\prime}\right)=0$ and $D \cdot(\Delta-C) \geq 0$ and $D \cdot C \geq 0$ (write C as $\sum k_{i} E_{i}+F_{i}$, where F doesn't have any of the E_{i} as components). This forces $D \cdot(\Delta-C)=0$. Since D is connected, it is contained in one of the fibers and $D^{2}=0$. We see that D is a rational multiple of one of the fibers of the Stein factorization $f: X \rightarrow B^{\prime} \rightarrow B$. Since the gcd of the coefficients of D is 1 , the fiber must be a positive integral multiple of D. It is easy to see that the genus of the fiber is 1 , implying that it is an elliptic/quasielliptic fibration.
Case 2: $p_{g}>0$. As before, it is enough to show that $\operatorname{dim} H^{0}\left(\mathcal{O}_{X}(\Delta)\right) \geq 2$ for some divisor Δ of canonical type. We'll show that $\exists n>0$. s.t. $\operatorname{dim} H^{0}\left(\mathcal{O}_{X}(n D)\right) \geq 2$. Let $\mathcal{F}_{n}=\mathcal{O}_{X}(n D) / \mathcal{O}_{X}$. So we have
$0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(n D) \rightarrow \mathcal{F}_{n} \rightarrow 0 \Longrightarrow H^{0}\left(\mathcal{O}_{X}(n D)\right) \rightarrow H^{0}\left(\mathcal{F}_{n}\right) \rightarrow H^{1}\left(\mathcal{O}_{X}\right)$
It is enough to show that $H^{0}\left(\mathcal{F}_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ since the dimension of $H^{1}\left(\mathcal{O}_{X}\right)$ is fixed. Let $\mathcal{L}=\mathcal{F}_{1}=\mathcal{O}_{X}(D) / \mathcal{O}_{X}$ (note that $\mathcal{F}_{0}=0$). Then
\mathcal{L} is an invertible sheaf on D, and

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{n-1} \rightarrow \mathcal{F}_{n} \rightarrow \mathcal{O}_{X}((n+1) D) / \mathcal{O}_{X}(n D) \cong \mathcal{L}^{n} \rightarrow 0 \tag{15}
\end{equation*}
$$

implies that $n \mapsto h^{0}\left(\mathcal{F}_{n}\right)$ is nondecreasing. By Riemann-Roch,

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}(n D)\right)=\chi\left(\mathcal{O}_{X}\right) \Longrightarrow \chi\left(\mathcal{F}_{n}\right)=0 \tag{16}
\end{equation*}
$$

for all n. One finds that $H^{2}\left(\mathcal{O}_{X}(n D)\right)=0$ for $n \gg 0$ since $K-n D$ has $h^{0}=0(D$ is effective $)$. Thus, $H^{1}\left(\mathcal{F}_{n}\right) \neq 0$ for $n \gg 0$ since $h^{2}\left(\mathcal{O}_{X}\right)=$ $p_{g}>0$ and we have the exact sequence

$$
H^{1}\left(\mathcal{F}_{n}\right) \rightarrow H^{2}\left(\mathcal{O}_{X}\right) \rightarrow H^{2}\left(\mathcal{O}_{X}(n D)\right)
$$

This implies that $h^{0}\left(\mathcal{F}_{n}\right)=h^{1}\left(\mathcal{F}_{n}\right)>0$ for $n \gg 0$. If the sequence of integers $\left\{h^{0}\left(\mathcal{F}_{n}\right)\right\}$ is bounded above, let n be the largest s.t. $h^{0}\left(\mathcal{F}_{n-1}\right)<$ $h^{0}\left(\mathcal{F}_{n}\right)$. (There exists such an n because $h^{0}\left(\mathcal{F}_{0}\right)=0, h^{0}\left(\mathcal{F}_{n}\right)>0$ for $n \gg 0$.) We must have $h^{0}\left(\mathcal{F}_{n}\right)=h^{0}\left(\mathcal{F}_{n+1}\right)=\cdots$, and we obtain a nonzero global section of \mathcal{L}^{n} coming from $s \in H^{0}\left(\mathcal{F}_{n}\right)$ not in the image of $H^{0}\left(\mathcal{F}_{n-1}\right) . D$ is an icoct and \mathcal{L}^{n} has degree 0 on every component of D, so $\left.s\right|_{D}$ does not vanish anywhere on $D . \operatorname{Supp}\left(\mathcal{F}_{n}\right)=D \Longrightarrow s$ generates \mathcal{F}_{n} as an \mathcal{O}_{X}-module at all points of X, and thus defines a surjection $\mathcal{O}_{X} \rightarrow \mathcal{F}_{n}=\mathcal{O}_{X}(n D) / \mathcal{O}_{X}$ with kernel $\mathcal{O}_{X}(-n D)$ and an isomorphism $\mathcal{O}_{X} / \mathcal{O}_{X}(-n D) \cong \mathcal{O}_{X}(n D) / \mathcal{O}_{X}$. The tensor power gives an isomorphism $\mathcal{O}_{X} / \mathcal{O}_{X}(-n D) \xrightarrow{\sim} \mathcal{O}_{X}(m n D) / \mathcal{O}_{X}((m-1) n D)=\mathcal{F}_{m n} / \mathcal{F}_{(m-1) n}$ for all $m>1$. Now, we have

implying

for $m \gg 0$. So α is nonzero (because $H^{2}\left(\mathcal{O}_{X}\right)$ is nonzero), $h^{1}\left(\mathcal{F}_{m n}\right)>$ $h^{1}\left(\mathcal{F}_{n}\right)$ for $m \gg 0$, implying that $h^{0}\left(\mathcal{F}_{m n}\right)>h^{0}\left(\mathcal{F}_{n}\right)$, a contradiction.

Theorem 2. Let X be a minimal surface with $K^{2}=0, K \cdot C \geq 0 \forall$ curves C on X. Then either $2 K \sim 0$ or X has an icoct.

Proof. Next time.

