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ALGEBRAIC SURFACES, LECTURE 19 

LECTURES: ABHINAV KUMAR 

Corollary 1. If D is an indecomposable curve of canonical type (icoct), then 
ωD 

∼= OD, where ωD is the dualizing sheaf of D. 

Proof. By Serre duality, h1(ωD) = h0(OD) = 0. We have the short exact sequence 

(1) 0 → OX (K) → OX (K + D) → ωD → 0 

so χ(ωD) = χ(OX (K +D))−χ(OX (K)) = 1 ((K +D) D) = 0 by Riemann-Roch 
2 ·

(using D2 = 0 and D K = 0). Thus, h0(ωD) = 1. Since ωD has degree 0 along · 
the Ei, 

(2) deg Ei (OD ⊗OX (K + D) ⊗OEi ) = (K + D) · Ei = 0 

It follows from the proposition last time that ωD 
∼ �= OD. 

Corollary 2. If D = niEi is an icoct, D� an effective divisor on X s.t. 
D� Ei = 0 for all i, then D� = nD + D�� where n ≥ 0, D�� an effective divisor · 
disjoint from D. 

Proof. Let n be the largest integer s.t. D� − nD ≥ 0, and let D�� = D� − nD, L = 
OD(D��). ∃ an exact sequence 

(3) 0 → OX (D
�� − D) → OX (D

��) → OD(D��) = L → 0 

Let s ∈ H0(X, OX (D
��)) be s.t. div X (s) = D��. Since D�� − D = D − (n + 1)D is 

not effective, s doesn’t come from H0(OX (D
�� −D)), so its image in H0(OD(D��)) 

is nonzero. But deg (L ) = D�� Ei = (D� − nD) Ei = 0 = = =|Ei · · ⇒ L ∼ OD ⇒ 
s(x) = 0 � ∀ x ∈ D, so that the support of D�� must be disjoint from that of D. � 

Theorem 1. Let X be a minimal surface with K2 = 0 and K C ≥ 0 for all curves ·
on X. If D is an icoct on X, ∃ an elliptic or quasielliptic fibration f : X B→ 
on X obtained from the Stein factorization of φ|nD| : X → P(H0(OX (nD))∨) for 
some n > 0. 

Proof. Idea: use D and K to get an elliptic/quasielliptic fibration. Then show 
that the fiber must be a multiple of D. 
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2 LECTURES: ABHINAV KUMAR 

Case 1: pg = 0. or n ≥ 0, we have the exact sequence 

(4) 0 → OX (nK + (n − 1)D) → OX (nK + nD) → OD → 0 

obtained by tensoring 0 → OX (−D) → OX → OD → 0 by n(K + D) and 
using OX (nK + nD) ⊗ OD = ω⊗n = since D is an icoct. We claim ∼

D 
∼ OD 

that 

(5)
 H2(OX (nK + (n − 1)D)) = H0(−(n − 1)(K + D))0 

mfor n ≥ 2. To see this, note that if Δ ∈
either Δ = 0 

(K + D)
 for m > 0, then

n 

H = −D H < 0 for an ample · 
divisor H, giving a contradiction, or Δ > 0 with a similar contradiction. 

= =
⇒ mK ∼ −mD ⇒ K ·


Also, H2(OD) = 2 since D has support of dimension 1, implying that 
H2(OX (nK + nD)) = 0, and H1(OD) = H0(ωD) = H0(OD) =� 0 gives 
H1(OX (nK + nD)) = 0. We know from Riemann-Roch that �

1 
(6) 

χ(OX (nK + nD)) = χ(OX ) + 
2
(nK + nD)(nK + nD − K) 

= χ(OX ) = 1 − q 

(since pg = 0). Noether’s formula states that 

(7)  12 − 12q = 12 − 12q − 12p 2
g = K + 2 − 2b1 + b2 

with b1 = 2q since the irregularity Δ = 0 because pg = 0. So 

(8) 10 − 8q = b2 ≥ 1 =⇒  q ≤ 1 =⇒  χ(OX ) = 0, 1 

and χ(OX (nK + nD)) = 0 or 1 for n ≥ 2. Since H1(OX (nK + nD)) = 0 
and H2(OX (nK + nD)) = 0, we must have H0(OX (nK + nD)) = 0 for 
n ≥ 2. So ∃ Dn ∈ |nK + nD|.

 As before, we see that Dn = 0.  

We claim that Dn is of canonical type. Letting D
= 
�

niEi, we find 
that 

(9) Dn · Ei = n(K · Ei) + n(D · Ei) = 0 

�
�

This implies that Dn = aD + kjFj for some a ≥ 0, kj > 0 integers, Fj 

distinct irreducible curves that don’t intersect D. Now K Fj ≥ 0, and ·

by our hypothesis ( kj Fj ) K ≥ 0. But it equals K nK + nD − D = 0, · · 
so K Fj = 0 for all j. Finally, · 

(10) Dn · Fj = n(K Fj ) + n(D Fj ) = 0 · · 

so Dn is of canonical type. 
Now, Dn can’t be a multiple of D for all n, For then Dn = mD = ⇒

nK ∼ λnD for some integer λn for each n ≥ 2 = K = 3K 2K is a ⇒ · 
multiple of D, say λ D = K. If λ < 0, this contradicts K H ≥ 0. If· · 
λ ≥ 0, then |K| = |λD| = ∅ which contradicts pg = 0. So ∃ a curve of 
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canonical type D� on X s.t. removing the multiple of D and decomposing 
to get an icoct, we get something disjoint from D. So let D� be an icoct, 
disjoint from D. Then 

1) 0 → OX (2K + D + D�) → OX (2K + 2D + 2D�) → OD ⊕OD� → 0 

(using ω 2
D 
∼= OD, ωD� ∼= OD� ). As before, we can show that H (

     2    
OX (2K +

D+D�)) = 0, and therefore H (OX (2K+2D+2D�)) = 0. So χ(OX (2K + 
2D+2D�)) = χ(OX ) = 0 or 1, while h1(OX (2K +2D+2 D

�)) 
1 1

      0   
≥ 2 (because 

h (OD), h (OD�) ≥ 1) implies that h (OX (2K + 2D + 2D�)) ≥ 0. Now, 
take 

  2) Δ ∈ |2K + 2D + 2D�| , Δ > 0, Δ2 = 0, dim |Δ| ≥ 1 

Since D, D� are of canonical type, so is Δ (easy exercise). 
We now claim that |Δ| is composed with a pencil (i.e. it gives a map 

to a curve). To see this, let C be the fixed part of |Δ|, then since Δ is 
of canonical type, we get (Δ − C)2 ≤ 0 (the self-intersection of a divisor 
supported on a curve of canonical type is ≤ 0). So the rational map 

3)	 φ Δ  : X → φ  | Δ (X) = B| | | ⊂ |Δ| 

is defined everywhere (else would have (Δ−C)2 > 0. Use ˜C1·C2 = C1

           
·C̃2+ 

m1m2 for a single blowup at p if C1, C2 pass through p with multiplicity 

m , m and apply to two elements of Δ�  C with zero intersection after 

(1

(1

(1

1 2 −
the blowup). Since dim |Δ| ≥ 1, B can’t be a point. And it can’t be 
a surface, else we would have Δ � C = φ∗(H) = ⇒ ((Δ − C)2) > 0. 
So Δ is composed with a pencil and φ is a morphism. Now Δ D = · 
D (2K + 2D + 2D�) = 0 and D (Δ − C

|Δ
)
| 
≥ 0 and D C ≥ 0 (write C as·	 · · 

kiEi + Fi, where F doesn’t have any of the Ei as components). This 
forces D (Δ − C) = 0. Since D is connected, it is contained in one of · 
the fibers and D2 = 0. We see that D is a rational multiple of one of the 
fibers of the Stein factorization f : X B� B. Since the gcd of the → →
coefficients of D is 1, the fiber must be a positive integral multiple of D. 
It is easy to see that the genus of the fiber is 1, implying that it is an 
elliptic/quasielliptic fibration. 

Case 2:	 pg > 0. As before, it is enough to show that dim H0(OX (Δ)) ≥ 2 
for some divisor Δ of canonical type. We’ll show that ∃n > 0. s.t. 
dim H0(OX (nD)) ≥ 2. Let Fn = OX (nD)/OX . So we have 

(14) 
0 → OX → OX (nD) → Fn → 0 = ⇒ H0(OX (nD)) → H0(Fn) → H1(OX ) 

It is enough to show that H0(Fn) → ∞ as n → ∞ since the dimension 
of H1(OX ) is fixed. Let L = F1 = OX (D)/OX (note that F0 = 0). Then 
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L is an invertible sheaf on D, and 

0 → F n 
n 1 → Fn → OX ((n + 1)D)/OX (nD) ∼= L → 0−

implies that n �→ h0(Fn) is nondecreasing. By Riemann-Roch, 

χ(OX (nD)) = χ(OX ) =⇒  χ(Fn) = 0 

for all n. One finds that H2(OX (nD)) = 0 for n >> 0 since K  nD has 
h0 = 0 (D is effective). Thus, H1(Fn) = 0 for n >> 0 since 

−
h2( X ) = 

pg > 0  
O

and we have the exact sequence 

H1(Fn) → H2(OX ) → H2(OX (nD)) 

This implies that h0(Fn) = h1(Fn) > 0 for n >> 0. If the sequence of 
integers {h0(Fn)} is bounded above, let n be the largest s.t. h0( n−1) < 
h0(Fn). (There exists such an n  

F
because h0(F0) = 0, h0(

   
Fn) > 0 for 

n >> 0.) We must have h0(Fn) = h0(Fn+1) = · · · , and we obtain a
nonzero global section of Ln coming from s ∈ H0(Fn) not in the image of 
H0(Fn 1). D is an icoct and Ln has degree 0 on every component of D, −

              

(15) 

(16) 

�

(17) 

so s|D does not vanish anywhere on D. Supp (Fn) = D =⇒ s generates
Fn as an OX -module at all points of X, and thus defines a surjection 
OX → Fn = OX (nD)/OX with kernel OX (−nD) and an isomorphism 
OX /OX (−nD) ∼ The tensor power gives an isomorphism= OX (nD)/OX . 
OX /OX (−nD) 

∼
= Fmn/F(m−1)n for all→ OX (mnD)/OX ((m − 1)nD)


m > 1. Now, we have


0 0 

�� OX ((m − 1)nD) �� F(m−1)n �� 0 

�� OX (mnD) �� �� 0 

0 �� OX 

= 

��
(18) 0 �� OX Fmn 

Fn 

0


Fn 

0 
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mplying 
α 

H1(F  1  1
(m−1)n) H (Fmn) H (Fn) 

  
H2(OX ) 

= 
H2(OX ) 

= H2(OX ((m − 1)nD) H2(OX (mnD)) = 0 

or m >> 0. So α is nonzero (because H2(O 1
X ) is nonzero), h ( m

1(Fn) for m >> 0, implying that 0
F

h (Fmn) > h0(Fn), a contradictio

m 2. Let X be a minimal surface with K2 = 0, K · C ≥ 0 ∀ curves 
n either 2K ∼ 0 or X has an icoct.


ext time. 
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(19) 

0

f n) > 
h n. 

� 

Theore C on
X. The

Proof. N �
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