MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 20

LECTURES: ABHINAV KUMAR

Last time we stated the following theorem:
Theorem 1. Let X be a minimal surface with $K^{2}=0, K \cdot C \geq 0$ for all curves C on X. Then either $2 K \sim 0$ or X has an icoct (indecomposable curve of canonical type).

Proof. First, assume $|2 K| \neq \varnothing$. Let $D \in|2 K|$: then either $D=0$, in which case $2 K \sim 0$ and we're done, or else $D=\sum n_{i} E_{i}>0$. Then $D \cdot K=2 K^{2}=0$. So $\sum n_{i}\left(K \cdot E_{i}\right)=0$. But $K \cdot E_{i} \geq 0$ for all i by assumption. This forces $K \cdot E_{i}=0$ for all i, so $D \cdot E_{i}=0$ for all i as well. Thus, D is of canonical type. We get an icoct by decomposing D.

On the other hand, if $|2 K|=\varnothing, K^{2}=0$, so RR gives $h^{0}(2 K)+h^{0}(-K) \geq$ $\chi\left(\mathcal{O}_{X}\right)$. By assumption, $p_{2}=h^{0}(2 K)=0$, so $p_{g}=0$ as well, implying that $\chi\left(\mathcal{O}_{X}\right)=1-q \Longrightarrow h^{0}(-K) \geq 1-q$.

If $q=0$ then $H^{0}(-K) \neq 0$. Letting $D \in|-K|$, if $D=0$ then $K \sim 0 \Longrightarrow$ $2 K \sim 0$, a contradiction. If $D>0$, then for H ample, $D \cdot H \geq 0 \Longrightarrow K \cdot H<0$ contradicting our hypothesis. So assume $q \geq 1, p_{g}=0$. Noether's formula gives $10-8 q=b_{2} \Longrightarrow q \leq 1 \Longrightarrow q=1$. Let $f: X \rightarrow B=\operatorname{Alb}(X)$ be the Albanese map, which in this case must be a surjective map onto an elliptic curve. Let $F_{b}=f^{-1}(b)$ be the fiber over $b \in B$. If $p_{a}\left(F_{b}\right)=0$, then $F_{b}^{2}=0$ gives $F_{b} \cdot K=-2$ by the genus formula, a contradiction.

If $p_{a}\left(F_{b}\right)=1, F_{b}$ is an icoct and we are done. So assume $p_{a}\left(F_{b}\right) \geq 2$. The genus formula gives $K \cdot F_{b}=2 p_{a}\left(F_{b}\right)-2 \geq 2$. For any closed point $a \in B \backslash\{b\}$, let F_{a} be the fiber over a. Then we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}\left(2 K+F_{a}-F_{b}\right) \rightarrow \mathcal{O}_{X}\left(2 K+F_{a}\right) \rightarrow \mathcal{O}_{F_{b}}\left(\left.2 K\right|_{F_{b}}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

Note that $\mathcal{O}_{X}\left(F_{a}\right) \otimes \mathcal{O}_{F_{b}}=\mathcal{O}_{F_{b}}$. Now, let's check $\left|F_{b}-F_{a}-K\right|=\varnothing$. Otherwise, we have $D \sim F_{b}-F_{a}-K \geq 0$. Then $K \sim F_{b}-F_{a}-D$ and $K \cdot F_{b}=F_{b}^{2}-F_{a}$. $F_{b}-D \cdot F_{b}=-D \cdot F_{b} \leq 0$ (because $D \cdot F_{b}=D \cdot F_{c} \geq 0$, since we can move the fiber) contradicting $K \cdot F_{b} \geq 2$. Therefore $H^{2}\left(2 K+F_{a}-F_{b}\right)=0$ by Serre duality, and Riemann-Roch gives $\chi\left(2 K+F_{a}-F_{b}\right)=\chi\left(\mathcal{O}_{X}\right)=1-q+p_{g}=0$. So either $\left|2 K+F_{a}-F_{b}\right| \neq \varnothing$, or $H^{i}\left(\mathcal{O}_{X}\left(2 K+F_{a}-F_{b}\right)\right)=0$ for $i=0,1,2$. In the first case, we get the desired icoct by taking an effective divisor in $\left|2 K+F_{a}-F_{b}\right|$. So assume the latter case for all $a \in B \backslash\{b\}$. Then $H^{0}\left(\mathcal{O}_{X}\left(2 K+F_{a}\right)\right) \rightarrow$
$H^{0}\left(\mathcal{O}_{F_{b}}\left(\left.2 K\right|_{F_{b}}\right)\right)$ is an isomorphism. Fix a nonzero section $s \in H^{0}\left(\mathcal{O}_{F_{b}}\left(\left.2 K\right|_{F_{b}}\right)\right)$, which exists because F_{b} has genus ≥ 2 and $\operatorname{deg}\left(\left.2 K\right|_{F_{b}}\right)=2\left(K \cdot F_{b}\right)=2\left(2 p_{a}\left(F_{b}\right)-\right.$ 2), so Riemann-Roch on F_{b} gives a global section.

Let $\Delta=\operatorname{div}_{F_{b}}(s)$. For every $a \in B \backslash\{b\}$, lift s uniquely to a section $s_{a} \in$ $H^{0}\left(\mathcal{O}_{X}\left(2 K+F_{a}\right)\right)$. Let $D_{a}=\operatorname{div}_{X}\left(s_{a}\right)$. This is an algebraic family of effective divisors $\left\{D_{a}\right\}_{a \in B \backslash\{b\}}$ s.t. $\left.D_{a}\right|_{F_{b}}=\Delta$ for all a. We cannot have $D_{a} \sim D_{a}^{\prime}$ for $a \neq a^{\prime}$ (else $F_{a} \sim F_{a}^{\prime} \Longrightarrow a \sim a^{\prime}$ on the elliptic curve B, which is impossible). So in particular, $D_{a} \neq D_{a^{\prime}}$, and X is the closure of $\bigcup_{a \neq b} D_{a}$. Letting D_{b} be the specialization of D_{a} as $a \rightarrow b$, we find that it must have F_{b} among its components, since $\left.D_{a}\right|_{F_{b}}=\Delta$ is supported on a fixed finite set of points on F_{b}. So $D_{b}=F_{b}+D_{b}^{\prime}$ for some $D_{b}^{\prime} \geq 0$. Since $D_{b} \in\left|2 K+F_{b}\right|$, we get $D_{b}^{\prime} \in|2 K|$, contradicting $|2 K| \neq 0$.

Corollary 1. If X is a minimal surface with $K^{2}=0, K \cdot C \geq 0$ for all curves C on X. Then either $2 K \sim 0$ or \exists an elliptic/quasi-elliptic fibration $f: X \rightarrow B$.

1. More on elliptic/Quasi-ElLiptic fibrations

Let $f: X \rightarrow B$ be an elliptic/quasi-elliptic fibration. By definition, $k(B)$ is algebraically closed in $k(S)$, so all but finitely many fibers are geometrically integral, and there are a finite number of points $b_{1}, \ldots, b_{r} \in B$ s.t. $F_{b}=f^{-1}(b)$ is an icoct for $b \in B \backslash\left\{b_{1}, \ldots, b_{r}\right\}$. Furthermore, $F_{b_{i}}=f^{-1}\left(b_{i}\right)=m_{i} P_{i}$, with P_{i} an icoct (since $f_{*} \mathcal{O}_{X}=\mathcal{O}_{B}$, by Stein factorization all the fibers are connected).

The ones for which $m_{i} \geq 2$ are called multiple fibers of the fibration.
Now, $R^{1} f_{*} \mathcal{O}_{X}$ is a coherent \mathcal{O}_{B}-module, and $R^{1} f_{*} \mathcal{O}_{X} \otimes k(b)=H^{1}\left(F_{b}, \mathcal{O}_{b}\right)$ for all $b \in B$ (by the base change theorem). It is clear that, for $b \in B \backslash\left\{b_{1}, \ldots, b_{r}\right\}$, $h^{1}\left(F_{b}, \mathcal{O}_{F_{b}}\right)=1\left(\right.$ since $H^{1}\left(F_{b}, \mathcal{O}_{F_{b}}\right) \cong H^{0}\left(F_{b}, \omega_{F_{b}}\right)^{\vee}$, where $\omega_{F_{b}}$ is the dualizing sheaf of F_{b}, and since $\omega_{b} \cong \mathcal{O}_{F_{b}}$, as F_{b} is an icoct and $h^{0}\left(F_{b}, \mathcal{O}_{F_{b}}\right)=1$). Since B is a curve, $R^{1} f_{*} \mathcal{O}_{X}=L \oplus T$ for L locally free of rank 1 (invertible) and T torsion (supported at finitely many points). Also Supp $T \subset\left\{b_{1}, \ldots, b_{r}\right\}$, and T is an \mathcal{O}_{B}-module of finite length. Now Riemann-Roch gives $\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{X}\left(-F_{b}\right)\right)$ for any b (since $F_{b} \cdot F_{b}=0$ and $K \cdot F_{b}=0$ from the genus formula. Thus, $\chi\left(\mathcal{O}_{F_{b}}\right)=0$ for any b, using the short exact sequence $0 \rightarrow \mathcal{O}_{X}\left(-F_{b}\right) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{F_{b}} \rightarrow 0$, and $h^{0}\left(\mathcal{O}_{F_{b}}\right)=h^{1}\left(\mathcal{O}_{F_{b}}\right)$, and $b \in \operatorname{Supp} T \Leftrightarrow h^{1}\left(\mathcal{O}_{F_{b}}\right) \geq 2 \Leftrightarrow h^{0}\left(\mathcal{O}_{F_{b}}\right) \geq 2$. These fibers F_{b} are called the exceptional or wild fibers (purely a characteristic p phenomenon by a theorem of Raynaud).

Theorem 2. With the above notation, $\omega_{X} \cong f^{*}\left(L^{-1} \otimes \omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)$ where $F_{b_{i}}=m_{i} P_{i}$ for $i=1, \ldots, r$ are all the multiple fibers of f and $0 \leq a_{i}<m_{i} \quad\left(a_{i}=\right.$ $m_{i}-1$ unless $F_{b_{i}}$ is exceptional) and $\operatorname{deg}\left(L^{-1} \otimes \omega_{B}\right)=2 p_{a}(B)-2+\chi\left(\mathcal{O}_{X}\right)+\ell(T)$, where $\ell(T)$ is the length of T as an \mathcal{O}_{B}-module.

Proof. First, let's see that K is vertical. We show this by finding an effective divisor D linearly equivalent to $K+\sum F_{a_{i}}$ for some finite set of points $\left\{a_{i}\right\} \subset B$.

Assume this for the moment. Then $D \cdot F_{b}=0$ for any closed point $b \in B$ since $F_{a_{i}} \cdot F_{b}=0$ and $K \cdot F_{b}=0$ (F_{b} is of canonical type). So it forces all components of D to be contained in the fibers of f, implying that K has the same property.

We can write $K \sim \sum \ell_{j} F_{y_{j}}+D$ for some effective D not containing any fibers. Letting D_{1}, \ldots, D_{s} be the connected components of D, we have that each D_{i} is supported (and contained in) some fiber $F_{z_{i}}$. Thus, $D_{i}^{2} \leq 0$. If $D_{i}^{2}<0$ for some i, then $D_{i} \cdot E<0$ for some component E of D_{i}. Then E is a component of the fiber $F_{z_{i}}$ which must be reducible, implying that $E^{2}<0$. Also, $K \cdot E=\sum \ell_{j} F_{y_{j}} \cdot E+D \cdot E=D \cdot E=\sum D_{i} \cdot E=D_{i} \cdot E<0$ and E is an exceptional curve, contradicting minimality. So $D_{i}^{2}=0$ for all i, and D_{i} is a rational multiple of the fiber $F_{z_{i}}$, implying that $\omega_{X} \cong f^{*}(M) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)$ for $0=a_{i} \leq m_{i}, a_{i} \in \mathbb{Z}$.

Now we demonstrate the first step, i.e. getting $K+\sum F_{a_{i}}$ equivalent to an effective divisor. If F_{b} is not a multiple fiber, then $\omega_{F_{b}} \cong \mathcal{O}_{F_{b}}$ (F_{b} is an icoct), which gives via adjunction $\omega_{X} \otimes \mathcal{O}_{X}\left(F_{b}\right) \otimes \mathcal{O}_{F_{b}} \cong \mathcal{O}_{F_{b}}$. Also, $\mathcal{O}_{X}\left(F_{b}\right) \otimes \mathcal{O}_{F_{b}}$ is trivial (since it has degree 0 along the components and has a global section). So $\omega_{X} \otimes \mathcal{O}_{F_{b}} \cong \mathcal{O}_{F_{b}}$ as well. So take a_{1}, \ldots, a_{m} to be m general points of B (s.t. $F_{a_{i}}$ are not multiple fibers). Then we have $0 \rightarrow \omega_{X} \rightarrow \omega_{X} \otimes \mathcal{O}_{X}\left(\sum F_{a_{i}}\right) \rightarrow$ $\bigoplus \mathcal{O}_{F_{a_{i}}} \rightarrow 0$ (for one a_{i}, tensoring $0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}\left(F_{a}\right) \rightarrow \mathcal{O}_{F_{a}} \rightarrow 0$ by ω_{X}, and using the Chinese Remainder Theorem for more a_{i}). We get a cohomology exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\omega_{X}\right) \rightarrow H^{0}\left(\omega_{X} \otimes \mathcal{O}_{X}\left(\sum F_{a_{i}}\right)\right) \rightarrow \bigoplus H^{0}\left(F_{a_{i}}\right) \rightarrow H^{1}\left(\omega_{X}\right) \rightarrow \cdots \tag{2}
\end{equation*}
$$

Now $h^{1}\left(\omega_{X}\right)$ is constant and $\oplus H^{0}\left(F_{a_{i}}\right)$ had dimension m, so for large enough m, we find that $\left|K+\sum F_{a_{i}}\right|$ is not empty.

Getting back to $\omega_{X} \cong f^{*}(M) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)$, pushing forward by f_{*} gives

$$
\begin{equation*}
f_{*}\left(\omega_{X}\right)=M \otimes f_{*} \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right) \tag{3}
\end{equation*}
$$

by the projection formula. Now, we claim that $f_{*}\left(\mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)\right) \cong \mathcal{O}_{B}$. We have $\mathcal{O}_{X} \subset \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right) \subset \mathcal{O}_{X}\left(\sum\left(m_{i}-1\right) P_{i}\right)$. So it is enough to show that $f_{*}\left(\mathcal{O}_{X}\left(\sum\left(m_{i}-1\right) P_{i}\right)\right) \cong \mathcal{O}_{B}$. This is local on B, so it is enough to show $f_{*}\left(\mathcal{O}_{X}\left(\left(m_{i}-1\right) P_{i}\right)\right) \cong \mathcal{O}_{B}$ for a single i. This is isomorphic to $f_{*} \mathcal{O}_{X}\left(m_{i} P_{i}\right) \otimes$ $\mathcal{O}_{X}\left(-P_{i}\right) \cong \mathcal{O}_{B}\left(b_{i}\right) \otimes f_{*} \mathcal{O}_{X}\left(-P_{i}\right)$, since $f^{*}\left(\mathcal{O}_{B}\left(b_{i}\right)\right)=\mathcal{O}_{X}\left(m_{i} P_{i}\right)$ using the projection formula. It is enough to show that $f_{*} \mathcal{O}_{X}\left(-P_{i}\right) \cong \mathcal{O}_{B}\left(-b_{i}\right)$. We have $f_{*} \mathcal{O}_{X}\left(-m P_{i}\right) \cong \mathcal{O}_{B}\left(-b_{i}\right) \subset f_{*} \mathcal{O}_{X}\left(-P_{i}\right) \subset \mathcal{O}_{B}$ and $\mathcal{O}_{B} / \mathcal{O}_{B}\left(-b_{i}\right)$ has length 1. Thus, it is enough to show $f_{*}(u): f_{*}\left(\mathcal{O}_{X}\left(-P_{i}\right)\right) \rightarrow f_{*} \mathcal{O}_{X} \cong \mathcal{O}_{B}$ is not an isomorphism (where $u: \mathcal{O}_{X}\left(-P_{i}\right) \rightarrow \mathcal{O}_{X}$).

We have the diagram

If $f_{*} u$ is an isomorphism, then the left arrow $\left(f_{*} u\right)^{\otimes m_{i}}$ is an isomorphism, implying that the right one is as well, which is a contradiction since $\mathcal{O}_{B}\left(-b_{i}\right)$ is strictly a subsheaf of \mathcal{O}_{B} with nonzero quotient. So $f_{*}(u)$ is not an isomorphism, and $f_{*}\left(\omega_{X}\right)=M$.

By Grothendieck's relative duality theorem, noting that the dualizing complex of $f: X \rightarrow B$ is $\omega_{X / B} \cong \omega_{X} \otimes f^{*}\left(\omega_{B}^{-1}\right)$, we have, for L^{\prime} an invertible \mathcal{O}_{X}-module, that $f_{*}\left(L^{\prime}\right)$ and $R^{1} f_{*}\left(L^{\prime-1} \otimes \omega_{X / B}\right)$ are dual w.r.t. \mathcal{O}_{B}. So,

$$
\begin{equation*}
f_{*}\left(L^{\prime}\right) \cong \operatorname{Hom}_{\mathcal{O}_{B}}\left(R^{1}\left(f_{*}\left(L^{\prime-1} \otimes \omega_{X / B}\right), \mathcal{O}_{B}\right) \cong \operatorname{Hom}_{\mathcal{O}_{B}}\left(R^{1} f_{*}\left(L^{\prime-1} \otimes \omega_{X}\right), \omega_{B}\right)\right. \tag{5}
\end{equation*}
$$

using the projection formula. Applying this to $L^{\prime}=\omega_{X}$, we get

$$
\begin{align*}
M & =f_{*} \omega_{X} \cong \operatorname{Hom}_{\mathcal{O}_{B}}\left(R^{1} f_{*} \mathcal{O}_{X}, \omega_{B}\right) \cong \operatorname{Hom}_{\mathcal{O}_{B}}\left(L \oplus T, \omega_{B}\right) \tag{6}\\
& \cong \operatorname{Hom}_{\mathcal{O}_{B}}\left(L, \omega_{B}\right)=L^{-1} \otimes \omega_{B}
\end{align*}
$$

so $\omega_{X}=f^{*}\left(L^{-1} \otimes \omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right), 0 \leq a_{i}<m_{i}$.

