18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 21

LECTURES: ABHINAV KUMAR

From last time: $f: X \to B$ is an elliptic/quasi-elliptic fibration, $F_{b_i} = m_i P_i$ multiple fibers, $R^1 f_* \mathcal{O}_X = L \oplus T$, for L invertible on B and T torsion. $b \in$ Supp $(T) \Leftrightarrow h^0(\mathcal{O}_{F_b}) \ge 0 \Leftrightarrow h^1(\mathcal{O}_{F_b}) \ge 2 \Leftrightarrow F_b$ is an exceptional/wild fiber.

Theorem 1. With the above notation, $\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i)$, where $0 \leq a_i < m, a_i = m_i - 1$ unless F_{b_i} is exceptional, and $\deg(L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T)$, where $\ell(T)$ is its length as an \mathcal{O}_B -module.

Proof. We have proved most of this: specifically, we have that $\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i)$ for $0 \leq a_i < m$. We have a Leray spectral sequence $E_2^{pq} = H^p(B, R^q f_* \mathcal{O}_X) \implies H^{p+q}(X, \mathcal{O}_X)$. The smaller order terms give us a short exact sequence

(1)
$$0 \to H^0(\mathcal{O}_B) \to H^1(\mathcal{O}_X) \to H^0(R^1 f_* \mathcal{O}_X) \to H^2(\mathcal{O}_B) = 0$$
$$0 \to H^2(\mathcal{O}_X) \to H^1(R^1 f_* \mathcal{O}_X) \to 0$$

Using this, we see that

(2)

$$\chi(\mathcal{O}_X) = h^0(\mathcal{O}_X) - h^1(\mathcal{O}_X) + h^2(\mathcal{O}_X)$$

$$= h^0(\mathcal{O}_B) - h^1(\mathcal{O}_B) - h^0(L \oplus T) + h^1(L \oplus T)$$

$$= \chi(\mathcal{O}_B) - \chi(L) - h^0(T)$$

$$= -\deg L - \ell(T)$$

by Riemann-Roch, so deg $L = -\chi(\mathcal{O}_X) - \ell(T)$. Since deg $\omega_B = 2p_a(B) - 2$, we have deg $(L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T)$. It remains to show that $a_i = m_i - 1$ if F_{b_i} is not exceptional. If fact, we can prove something stronger: let α_i be the order of $\mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i}$ in Pic (P_i) . Then we claim that

- (1) α_i divides m_i and $a_i + 1$,
- (2) $h^0(P_i, \mathcal{O}_{(\alpha_i+1)P_i}) \ge 2$ and $h^0(P_i, \mathcal{O}_{\alpha_i P_i}) = 1$, and
- (3) $h^0(P_i, nP_i)$ is a nondecreasing function of n.

Assuming this, if $a_i < m_i - 1$, then $\alpha_i < m_i$, so $m_i P_i$ is exceptional by (b) and (c), since then $h^0(\mathcal{O}_{m_i P_i}) \geq 2$.

We now prove the claim. If $m > n \ge 1$, then $\mathcal{O}_{mP} \to \mathcal{O}_{nP} \to 0$ gives $H^1(P, \mathcal{O}_{mP}) \to H^1(P, \mathcal{O}_{nP}) \to 0$, implying that $n \mapsto h^1(P, \mathcal{O}_{nP})$ is nondecreasing. But by Riemann-Roch and the definition of canonical type, $\chi(\mathcal{O}_{nP}) = 0$, so

 $h^0 = h^1$ is also nondecreasing. Now, by the definition of α_i , $\mathcal{O}_X(\alpha_i P_i) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$, implying that $\mathcal{O}_X(-n_i P_i) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$ as well. We thus obtain an exact sequence $0 \to \mathcal{O}_X(-\alpha_i P_i) \otimes \mathcal{O}_{P_i} = \mathcal{O}_{P_i} \to \mathcal{O}_{(\alpha_i+1)P_i} \to \mathcal{O}_{\alpha_i P_i} \to 0$, inducing a long exact sequence

(3)
$$0 \to k \cong H^0(\mathcal{O}_{P_i}) \to H^0(\mathcal{O}_{(\alpha_i+1)P_i}) \to H^0(\mathcal{O}_{\alpha_i P_i}) \to \cdots$$

and $h^0(\mathcal{O}_{(\alpha_i+1)P_i}) \geq 2$. But for $1 \leq j < \alpha_i, L_j = \mathcal{O}_X(-jP_i) \otimes \mathcal{O}_{P_i}$ is an invertible \mathcal{O}_{P_i} -module whose degree in each component of P_i equals 0. Since $L_j \ncong \mathcal{O}_{P_i}, H^0(L_j) = 0$, and $0 \to L_j \to \mathcal{O}_{(j+1)P_i} \to \mathcal{O}_{jP_i} \to 0$ gives $H^0(\mathcal{O}_{(j+1)P_i}) \cong H^0(\mathcal{O}_{jP_i})$. Since $H^0(\mathcal{O}_P) \cong k$ for P icoct, $H^0(\mathcal{O}_{2P}) \cong \cdots \cong H^0(\mathcal{O}_{\alpha P}) \cong k$ as well.

Finally,

(4)
$$(\mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i})^{m_i} \cong \mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$$

This is proved as follows, Since the fiber is cut out by a rational function f, $H^0(\mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{P_i}) \neq 0$. Via the exact sequence

(5)
$$0 \to \mathcal{O}_X \to \mathcal{O}_X(F_{b_i}) \xrightarrow{1/f \mapsto \overline{1/f}} \mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{F_{b_i}} \to 0$$

we get a global section of $\mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{F_{b_i}}$. But this also has degree 0 along the components. So it must be trivial, but what we proved for icoct. We also have

(6)
$$\mathcal{O}_X((a_i+1)P_i) \otimes \mathcal{O}_{P_i} \cong \omega_X \otimes \mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i} \cong \omega_{P_i} \cong \mathcal{O}_{P_i}$$

implying that $\alpha_i | a_i + 1$ as desired.

Corollary 1. $K^2 = 0$.

Corollary 2. If $h^1(\mathcal{O}_X) \leq 1$, then either $a_i + 1 = m_i$ or $a_i + \alpha_i + 1 = m_i$.

Proof. Exercise.

Remark. Raynaud showed that m_i/α_i is a power of p = char(k) (or is 1 if char(k) = 0). Therefore, there are no exceptional fibers in characteristic 0.

1. CLASSIFICATION (CONTD.)

If $f: X \to B$ is an elliptic/quasi-elliptic fibration, then

(7)
$$\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i), 0 \le a_i < m_i$$

If $n \geq 1$ is a multiple of m_1, \ldots, m_r , then

(8)
$$H^{0}(X, \omega_{X}^{\otimes n}) = H^{0}(B, L^{-n} \otimes \omega_{B}^{n} \otimes \mathcal{O}_{B}(\sum a_{i}(n/m_{i})b_{i}))$$

Now we recall the 4 classes of surfaces:

(a) \exists an integral curve C on X s.t. $K \cdot C < 0$.

- (b) $K \equiv 0$.
- (c) $K^2 = 0, K \cdot C \ge 0$ for all integral curves C, and $\exists C' \text{ s.t. } K \cdot C' > 0$.
- (d) $K^2 > 0$, and $K \cdot C > 0$ for all integral curves C.

Lemma 1. If X is in (a), then $\kappa(X) = -\infty$, i.e. $p_n = 0$ for all $n \ge 1$. If X is in (b), then $\kappa(X) \leq 0$. If X has an elliptic or quasielliptic fibration $f: X \to B$, and if we let $\lambda(f) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) + \sum \frac{a_i}{m_i}$, then X is not in class (d) and

- X is in (a) iff $\lambda(f) < 0$, in which case $\kappa(X) = -\infty$,
- X is in (b) iff $\lambda(f) = 0$, in which case $\kappa(X) = 0$,
- X is in (c) iff $\lambda(f) > 0$, in which case $\kappa(X) = 1$.

Proof. If $K \cdot C < 0$, then X is ruled, and $\kappa(X) = \infty$. We did this before, and there is an easy way to see that $p_n = 0$ for all $n \ge 1$. For every divisor $D \in \text{Div}(X), \exists n_D \text{ s.t. } |D+nK| = \emptyset \text{ for } n > n_D.$ (Since $(D+nK) \cdot C =$ $D \cdot C + n(K \cdot C)$ becomes negative eventually. Now C is effective. We claim that $C^2 \geq 0$, so by our useful lemma, 6|D + nK| can't have an effective divisor. If $C^2 < 0$, then $C \cdot K < 0$ would imply that C was an exceptional curve of the first kind, contradicting the minimality of X. Thus, $C^2 \ge 0$.) In particular, D = Kgives $|nK| = \emptyset$ for large enough n, implying that $|nK| = \emptyset$ for all n (since $p_n < p_{mn}$).

Next, assume $K \equiv 0$ (case (b)). If $p_n \geq 2$, then dim $|nK| \geq 1 \implies \exists$ a strictly positive divisor $\Delta > 0$ in |nK|. Then $\Delta \cdot H > 0$ for a hypersurface section, contradicting $nK \cdot H = 0$ since $K \equiv 0$. So $p_n \leq 1$ for all n, implying that $\kappa(X) \leq 0$.

Now assume X has an elliptic/quasielliptic fibration, and let $M = f_*(\omega_X) =$ $L^{-1} \otimes \omega_B$ from last time. Then M has degree $\lambda(f)$. Let H be a very ample divisor on X. Then $\pi = f|_H : H \to B$ is some finite map of degree $= H \cdot F > 0$. Now $n(K \cdot H) = \deg(\omega_X^n|_H) = \deg_H(\pi^*M) = (\deg \pi)(\deg_B M) = (H \cdot F)\lambda_f$. So if $\lambda_f < 0$, then $K \cdot H < 0$ and X is in (a).

Similarly, $\lambda(f) = 0 \implies K \cdot H = 0$ for every irreducible hyperplane section H, and any curve C can be written, up to \sim , as the difference of 2 such. This implies that $K \cdot C = 0 \forall C \implies K \equiv 0$. Lastly, $\lambda(f) > 0 \implies K \cdot C > 0$ for all horizontal irreducible C. For vertical C, $K \cdot C = 0$ by the formula for K, implying that $K \cdot C \geq 0$ for all C integral, $(K^2) = 0$ by the formula, implying that we are in class (c).

Let X be a minimal surface with $K^2 = 0, p_g \leq 1$ (in particular, every surface in class (b) is of this form. Then Noether's formula gives $10 - 8q + 12p_g = b_2 + 2\Delta$. Since $p_q \leq 1, 0 \leq \Delta \leq 2p_q \leq 2$, also $\Delta = 2(q-s)$ is even, we obtain the following possibilities.

- (1) $b_2 = 22, b_1 = 0, \chi(\mathcal{O}_X) = 2, q = 0, p_g = 1, \Delta = 0.$ (2) $b_2 = 14, b_1 = 2, \chi(\mathcal{O}_X) = 1, q = 1, p_g = 1, \Delta = 0.$

- (3) $b_2 = 10, b_1 = 0, \chi(\mathcal{O}_X) = 1$, and either $q = 0, p_g = 0, \Delta = 0$ or $q = 1, p_g = 1, \Delta = 2$.
- (4) $b_2 = 6, b_1 = 4, \chi(\mathcal{O}_X) = 0, q = 2, p_q = 1, \Delta = 0.$
- (5) $b_2 = 2, b_1 = 2, \chi(\mathcal{O}_X) = 0$, and either $q = 1, p_g = 1, \Delta = 0$ or $q = 2, p_g = 0, \Delta = 2$.

Note. If X is in class (b) and $p_g = 1$, then $K \sim 0$ (because $K = 0, H^0(K) \neq 0$ imply that $K \sim 0$.).

Let's deal with case 4 of class (b).

Proposition 1. Let X be minimal in class (b), and $b_2 = 2, b_1 = 2$. Then s = 1, Alb (X) is an elliptic curve, and $X \to Alb(X)$ gives an elliptic/quasielliptic fibration.

Proof. Let's see that the fibers of f are irreducible. If not, we would have $\rho > 2(F, H, \text{component of } F)$ and $b_2 \ge \rho > 2$, contradicting $b_2 = 2$. Now, to see that the fibers are not multiple, note that $\chi(\mathcal{O}_X) = 0$ from the list.

(9)
$$\deg (L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) = \ell(T) \ge 0$$

Since $\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i) \equiv 0$, we see that $\ell(T) \cdot f^{-1}(y) + \sum a_i P_i \equiv 0$. But it is an effective divisor, implying that all the $a_i = 0, \ell(T) = 0$ and thus $a_i = m_i - 1 \forall i$ (there are no wild fibers since T = 0). So $m_i = 1 \forall i$. Thus, we have integral fibers, which is the case of a bielliptic surface. \Box