MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 21

LECTURES: ABHINAV KUMAR

From last time: $f: X \rightarrow B$ is an elliptic/quasi-elliptic fibration, $F_{b_{i}}=m_{i} P_{i}$ multiple fibers, $R^{1} f_{*} \mathcal{O}_{X}=L \oplus T$, for L invertible on B and T torsion. $b \in$ $\operatorname{Supp}(T) \Leftrightarrow h^{0}\left(\mathcal{O}_{F_{b}}\right) \geq 0 \Leftrightarrow h^{1}\left(\mathcal{O}_{F_{b}}\right) \geq 2 \Leftrightarrow F_{b}$ is an exceptional/wild fiber.

Theorem 1. With the above notation, $\omega_{X}=f^{*}\left(L^{-1} \otimes \omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)$, where $0 \leq a_{i}<m, a_{i}=m_{i}-1$ unless $F_{b_{i}}$ is exceptional, and $\operatorname{deg}\left(L^{-1} \otimes \omega_{B}\right)=$ $2 p_{a}(B)-2+\chi\left(\mathcal{O}_{X}\right)+\ell(T)$, where $\ell(T)$ is its length as an \mathcal{O}_{B}-module.
Proof. We have proved most of this: specifically, we have that $\omega_{X}=f^{*}\left(L^{-1} \otimes\right.$ $\left.\omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right)$ for $0 \leq a_{i}<m$. We have a Leray spectral sequence $E_{2}^{p q}=$ $H^{p}\left(B, R^{q} f_{*} \mathcal{O}_{X}\right) \Longrightarrow H^{p+q}\left(X, \mathcal{O}_{X}\right)$. The smaller order terms give us a short exact sequence

$$
\begin{align*}
0 \rightarrow H^{0}\left(\mathcal{O}_{B}\right) \rightarrow H^{1}\left(\mathcal{O}_{X}\right) & \rightarrow H^{0}\left(R^{1} f_{*} \mathcal{O}_{X}\right) \rightarrow H^{2}\left(\mathcal{O}_{B}\right)=0 \\
0 & \rightarrow H^{2}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(R^{1} f_{*} \mathcal{O}_{X}\right) \rightarrow 0 \tag{1}
\end{align*}
$$

Using this, we see that

$$
\begin{align*}
\chi\left(\mathcal{O}_{X}\right) & =h^{0}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right)+h^{2}\left(\mathcal{O}_{X}\right) \\
& =h^{0}\left(\mathcal{O}_{B}\right)-h^{1}\left(\mathcal{O}_{B}\right)-h^{0}(L \oplus T)+h^{1}(L \oplus T) \\
& =\chi\left(\mathcal{O}_{B}\right)-\chi(L)-h^{0}(T) \tag{2}\\
& =-\operatorname{deg} L-\ell(T)
\end{align*}
$$

by Riemann-Roch, so $\operatorname{deg} L=-\chi\left(\mathcal{O}_{X}\right)-\ell(T)$. Since $\operatorname{deg} \omega_{B}=2 p_{a}(B)-2$, we have $\operatorname{deg}\left(L^{-1} \otimes \omega_{B}\right)=2 p_{a}(B)-2+\chi\left(\mathcal{O}_{X}\right)+\ell(T)$. It remains to show that $a_{i}=m_{i}-1$ if $F_{b_{i}}$ is not exceptional. If fact, we can prove something stronger: let α_{i} be the order of $\mathcal{O}_{X}\left(P_{i}\right) \otimes \mathcal{O}_{P_{i}}$ in $\operatorname{Pic}\left(P_{i}\right)$. Then we claim that
(1) α_{i} divides m_{i} and $a_{i}+1$,
(2) $h^{0}\left(P_{i}, \mathcal{O}_{\left(\alpha_{i}+1\right) P_{i}}\right) \geq 2$ and $h^{0}\left(P_{i}, \mathcal{O}_{\alpha_{i} P_{i}}\right)=1$, and
(3) $h^{0}\left(P_{i}, n P_{i}\right)$ is a nondecreasing function of n.

Assuming this, if $a_{i}<m_{i}-1$, then $\alpha_{i}<m_{i}$, so $m_{i} P_{i}$ is exceptional by (b) and (c), since then $h^{0}\left(\mathcal{O}_{m_{i} P_{i}}\right) \geq 2$.

We now prove the claim. If $m>n \geq 1$, then $\mathcal{O}_{m P} \rightarrow \mathcal{O}_{n P} \rightarrow 0$ gives $H^{1}\left(P, \mathcal{O}_{m P}\right) \rightarrow H^{1}\left(P, \mathcal{O}_{n P}\right) \rightarrow 0$, implying that $n \mapsto h^{1}\left(P, \mathcal{O}_{n P}\right)$ is nondecreasing. But by Riemann-Roch and the definition of canonical type, $\chi\left(\mathcal{O}_{n P}\right)=0$, so
$h^{0}=h^{1}$ is also nondecreasing. Now, by the definition of $\alpha_{i}, \mathcal{O}_{X}\left(\alpha_{i} P_{i}\right) \otimes \mathcal{O}_{P_{i}} \cong$ $\mathcal{O}_{P_{i}}$, implying that $\mathcal{O}_{X}\left(-n_{i} P_{i}\right) \otimes \mathcal{O}_{P_{i}} \cong \mathcal{O}_{P_{i}}$ as well. We thus obtain an exact sequence $0 \rightarrow \mathcal{O}_{X}\left(-\alpha_{i} P_{i}\right) \otimes \mathcal{O}_{P_{i}}=\mathcal{O}_{P_{i}} \rightarrow \mathcal{O}_{\left(\alpha_{i}+1\right) P_{i}} \rightarrow \mathcal{O}_{\alpha_{i} P_{i}} \rightarrow 0$, inducing a long exact sequence

$$
\begin{equation*}
0 \rightarrow k \cong H^{0}\left(\mathcal{O}_{P_{i}}\right) \rightarrow H^{0}\left(\mathcal{O}_{\left(\alpha_{i}+1\right) P_{i}}\right) \rightarrow H^{0}\left(\mathcal{O}_{\alpha_{i} P_{i}}\right) \rightarrow \cdots \tag{3}
\end{equation*}
$$

and $h^{0}\left(\mathcal{O}_{\left(\alpha_{i}+1\right) P_{i}}\right) \geq 2$. But for $1 \leq j<\alpha_{i}, L_{j}=\mathcal{O}_{X}\left(-j P_{i}\right) \otimes \mathcal{O}_{P_{i}}$ is an invertible $\mathcal{O}_{P_{i}}$-module whose degree in each component of P_{i} equals 0 . Since $L_{j} \not \not \mathcal{O}_{P_{i}}, H^{0}\left(L_{j}\right)=0$, and $0 \rightarrow L_{j} \rightarrow \mathcal{O}_{(j+1) P_{i}} \rightarrow \mathcal{O}_{j P_{i}} \rightarrow 0$ gives $H^{0}\left(\mathcal{O}_{(j+1) P_{i}}\right) \cong$ $H^{0}\left(\mathcal{O}_{j P_{i}}\right)$. Since $H^{0}\left(\mathcal{O}_{P}\right) \cong k$ for P icoct, $H^{0}\left(\mathcal{O}_{2 P}\right) \cong \cdots \cong H^{0}\left(\mathcal{O}_{\alpha P}\right) \cong k$ as well.

Finally,

$$
\begin{equation*}
\left(\mathcal{O}_{X}\left(P_{i}\right) \otimes \mathcal{O}_{P_{i}}\right)^{m_{i}} \cong \mathcal{O}_{X}\left(F_{b_{i}}\right) \otimes \mathcal{O}_{P_{i}} \cong \mathcal{O}_{P_{i}} \tag{4}
\end{equation*}
$$

This is proved as follows, Since the fiber is cut out by a rational function f, $H^{0}\left(\mathcal{O}_{X}\left(F_{b_{i}}\right) \otimes \mathcal{O}_{P_{i}}\right) \neq 0$. Via the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}\left(F_{b_{i}}\right) \xrightarrow{1 / f \mapsto \overline{1 / f}} \mathcal{O}_{X}\left(F_{b_{i}}\right) \otimes \mathcal{O}_{F_{b_{i}}} \rightarrow 0 \tag{5}
\end{equation*}
$$

we get a global section of $\mathcal{O}_{X}\left(F_{b_{i}}\right) \otimes \mathcal{O}_{F_{b_{i}}}$. But this also has degree 0 along the components. So it must be trivial, but what we proved for icoct. We also have

$$
\begin{align*}
\mathcal{O}_{X}\left(\left(a_{i}+1\right) P_{i}\right) \otimes \mathcal{O}_{P_{i}} & \cong \omega_{X} \otimes \mathcal{O}_{X}\left(P_{i}\right) \otimes \mathcal{O}_{P_{i}} \\
& \cong \omega_{P_{i}} \cong \mathcal{O}_{P_{i}} \tag{6}
\end{align*}
$$

implying that $\alpha_{i} \mid a_{i}+1$ as desired.
Corollary 1. $K^{2}=0$.
Corollary 2. If $h^{1}\left(\mathcal{O}_{X}\right) \leq 1$, then either $a_{i}+1=m_{i}$ or $a_{i}+\alpha_{i}+1=m_{i}$.
Proof. Exercise.
Remark. Raynaud showed that m_{i} / α_{i} is a power of $p=\operatorname{char}(k)$ (or is 1 if $\operatorname{char}(k)=0)$. Therefore, there are no exceptional fibers in characteristic 0 .

1. Classification (contd.)

If $f: X \rightarrow B$ is an elliptic/quasi-elliptic fibration, then

$$
\begin{equation*}
\omega_{X}=f^{*}\left(L^{-1} \otimes \omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right), 0 \leq a_{i}<m_{i} \tag{7}
\end{equation*}
$$

If $n \geq 1$ is a multiple of m_{1}, \ldots, m_{r}, then

$$
\begin{equation*}
H^{0}\left(X, \omega_{X}^{\otimes n}\right)=H^{0}\left(B, L^{-n} \otimes \omega_{B}^{n} \otimes \mathcal{O}_{B}\left(\sum a_{i}\left(n / m_{i}\right) b_{i}\right)\right) \tag{8}
\end{equation*}
$$

Now we recall the 4 classes of surfaces:
(a) \exists an integral curve C on X s.t. $K \cdot C<0$.
(b) $K \equiv 0$.
(c) $K^{2}=0, K \cdot C \geq 0$ for all integral curves C, and $\exists C^{\prime}$ s.t. $K \cdot C^{\prime}>0$.
(d) $K^{2}>0$, and $K \cdot C \geq 0$ for all integral curves C.

Lemma 1. If X is in (a), then $\kappa(X)=-\infty$, i.e. $p_{n}=0$ for all $n \geq 1$. If X is in (b), then $\kappa(X) \leq 0$. If X has an elliptic or quasielliptic fibration $f: X \rightarrow B$, and if we let $\lambda(f)=2 p_{a}(B)-2+\chi\left(\mathcal{O}_{X}\right)+\ell(T)+\sum \frac{a_{i}}{m_{i}}$, then X is not in class (d) and

- X is in (a) iff $\lambda(f)<0$, in which case $\kappa(X)=-\infty$,
- X is in (b) iff $\lambda(f)=0$, in which case $\kappa(X)=0$,
- X is in (c) iff $\lambda(f)>0$, in which case $\kappa(X)=1$.

Proof. If $K \cdot C<0$, then X is ruled, and $\kappa(X)=\infty$. We did this before, and there is an easy way to see that $p_{n}=0$ for all $n \geq 1$. For every divisor $D \in \operatorname{Div}(X), \exists n_{D}$ s.t. $|D+n K|=\varnothing$ for $n>n_{D}$. (Since $(D+n K) \cdot C=$ $D \cdot C+n(K \cdot C)$ becomes negative eventually. Now C is effective. We claim that $C^{2} \geq 0$, so by our useful lemma, $6|D+n K|$ can't have an effective divisor. If $C^{2}<0$, then $C \cdot K<0$ would imply that C was an exceptional curve of the first kind, contradicting the minimality of X. Thus, $C^{2} \geq 0$.) In particular, $D=K$ gives $|n K|=\varnothing$ for large enough n, implying that $|n K|=\varnothing$ for all n (since $p_{n}<p_{m n}$.

Next, assume $K \equiv 0$ (case (b)). If $p_{n} \geq 2$, then $\operatorname{dim}|n K| \geq 1 \Longrightarrow \exists \mathrm{a}$ strictly positive divisor $\Delta>0$ in $|n K|$. Then $\Delta \cdot H>0$ for a hypersurface section, contradicting $n K \cdot H=0$ since $K \equiv 0$. So $p_{n} \leq 1$ for all n, implying that $\kappa(X) \leq 0$.

Now assume X has an elliptic/quasielliptic fibration, and let $M=f_{*}\left(\omega_{X}\right)=$ $L^{-1} \otimes \omega_{B}$ from last time. Then M has degree $\lambda(f)$. Let H be a very ample divisor on X. Then $\pi=\left.f\right|_{H}: H \rightarrow B$ is some finite map of degree $=H \cdot F>0$. Now $n(K \cdot H)=\operatorname{deg}\left(\left.\omega_{X}^{n}\right|_{H}\right)=\operatorname{deg}_{H}\left(\pi^{*} M\right)=(\operatorname{deg} \pi)\left(\operatorname{deg}_{B} M\right)=(H \cdot F) \lambda_{f}$. So if $\lambda_{f}<0$, then $K \cdot H<0$ and X is in (a).

Similarly, $\lambda(f)=0 \Longrightarrow K \cdot H=0$ for every irreducible hyperplane section H, and any curve C can be written, up to \sim, as the difference of 2 such. This implies that $K \cdot C=0 \forall C \Longrightarrow K \equiv 0$. Lastly, $\lambda(f)>0 \Longrightarrow K \cdot C>0$ for all horizontal irreducible C. For vertical $C, K \cdot C=0$ by the formula for K, implying that $K \cdot C \geq 0$ for all C integral, $\left(K^{2}\right)=0$ by the formula, implying that we are in class (c).
Let X be a minimal surface with $K^{2}=0, p_{g} \leq 1$ (in particular, every surface in class (b) is of this form. Then Noether's formula gives $10-8 q+12 p_{g}=b_{2}+2 \Delta$. Since $p_{g} \leq 1,0 \leq \Delta \leq 2 p_{g} \leq 2$, also $\Delta=2(q-s)$ is even, we obtain the following possibilities.
(1) $b_{2}=22, b_{1}=0, \chi\left(\mathcal{O}_{X}\right)=2, q=0, p_{g}=1, \Delta=0$.
(2) $b_{2}=14, b_{1}=2, \chi\left(\mathcal{O}_{X}\right)=1, q=1, p_{g}=1, \Delta=0$.
(3) $b_{2}=10, b_{1}=0, \chi\left(\mathcal{O}_{X}\right)=1$, and either $q=0, p_{g}=0, \Delta=0$ or $q=1, p_{g}=$ $1, \Delta=2$.
(4) $b_{2}=6, b_{1}=4, \chi\left(\mathcal{O}_{X}\right)=0, q=2, p_{g}=1, \Delta=0$.
(5) $b_{2}=2, b_{1}=2, \chi\left(\mathcal{O}_{X}\right)=0$, and either $q=1, p_{g}=1, \Delta=0$ or $q=2, p_{g}=$ $0, \Delta=2$.

Note. If X is in class (b) and $p_{g}=1$, then $K \sim 0$ (because $K=0, H^{0}(K) \neq 0$ imply that $K \sim 0$.).

Let's deal with case 4 of class (b).
Proposition 1. Let X be minimal in class (b), and $b_{2}=2, b_{1}=2$. Then $s=1$, $\operatorname{Alb}(X)$ is an elliptic curve, and $X \rightarrow \operatorname{Alb}(X)$ gives an elliptic/quasielliptic fibration.

Proof. Let's see that the fibers of f are irreducible. If not, we would have $\rho>$ $2(F, H$, component of $F)$ and $b_{2} \geq \rho>2$, contradicting $b_{2}=2$. Now, to see that the fibers are not multiple, note that $\chi\left(\mathcal{O}_{X}\right)=0$ from the list.

$$
\begin{equation*}
\operatorname{deg}\left(L^{-1} \otimes \omega_{B}\right)=2 p_{a}(B)-2+\chi\left(\mathcal{O}_{X}\right)+\ell(T)=\ell(T) \geq 0 \tag{9}
\end{equation*}
$$

Since $\omega_{X}=f^{*}\left(L^{-1} \otimes \omega_{B}\right) \otimes \mathcal{O}_{X}\left(\sum a_{i} P_{i}\right) \equiv 0$, we see that $\ell(T) \cdot f^{-1}(y)+\sum a_{i} P_{i} \equiv$ 0 . But it is an effective divisor, implying that all the $a_{i}=0, \ell(T)=0$ and thus $a_{i}=m_{i}-1 \forall i$ (there are no wild fibers since $T=0$). So $m_{i}=1 \forall i$. Thus, we have integral fibers, which is the case of a bielliptic surface.

