18.727 Topics in Algebraic Geometry: Algebraic Surfaces Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 5

LECTURES: ABHINAV KUMAR

1. Examples

- (1) If $S \subset \mathbb{P}^n, p \in S$, then projection from p gives a rational map $S \dashrightarrow \mathbb{P}^{n-1}$ defined away from p extending to $\operatorname{Bl}_p S = \tilde{S} \to \mathbb{P}^{n-1}$. For instance, if Q is a smooth quadric in \mathbb{P}^2 , we get a birational map $Q \dashrightarrow \mathbb{P}^2$ with $|tildeQ \to \mathbb{P}^2$ a morphism. It contracts the two lines passing through p, so $Q = \mathbb{P}^2(2-1)$.
- (2) A birational map of P² to itself is called a plane Cremona transformation e.g. quadratic transformation. One example is φ : P → P² given by (x : y : z) → (¹/_x : ¹/_y : ¹/_z) It is clearly birational and its own inverse. Let p = (1 : 0 : 0), q = (0 : 1 : 0), r = (0 : 0 : 1). These are the 3 base points of φ, and φ blows up these points and then blows down the three lines joining them. Similarly, we could take a linear system of 3 independent conics passing through three point p, q, r (non-collinear). Generally, 2 conics passing through p, q, r would have a unique 4th point of intersection, gives the birational map.
- (3) Linear systems of cubics: let p_1, \ldots, p_r be r distinct points in the plane $(r \leq 6)$ in general position, i.e. no 3 of them are collinear and no six lie on a conic. Let $\pi_r : P_r \to \mathbb{P}^2$ be the blowup of p_1, \ldots, p_r . Let d = q r. The linear system of cubics passing through p_1, \ldots, p_r defines an embedding $j : P_r \to \mathbb{P}^d$, and $S_d = j(P_r)$ is a surface of degree d in \mathbb{P}^d , called a del Pezzo surface of degree d. e.g. S_1 is a

Note. Contracting other curves and singularities: let $f: Y \to X$ be a resolution of a normal surface singularity $p \in X$ (i.e. X is normal at p). Then $p \subset X$ is called a *rational singularity*— if $R^1 f_* \mathcal{O}_Y = \mathcal{O}$ and $Y \to X$ is an isomorphism away from $Y \setminus \{f^{-1}(p)\} \to X \setminus \{p\}$, e.g. can include nonsingular p as a rational singularity.

Example. The *duVal singularities* are examples of rational singularities.

 $\begin{array}{l} A_n \ x^2 + y^2 + z^{n+1} = 0 \\ D_n \ x^2 + y^2 z + z^{n-1} = 0 . \\ E_6 \ x^2 + y^3 + z^4 = 0 . \end{array}$

$$\begin{split} E_6 \ x^2 + y^3 + yz^3 &= 0. \\ E_8 \ x^2 + y^3 + z^5 &= 0. \end{split}$$

If you resolve these, you get the corresponding Dynkin diagrams for the dual graph of the exceptional curves.

Theorem 1 (Artin Contraction). A connected set of curves $\{C_i\}$ on a surface Y is the exceptional locus of a rational singularity $p \in X$ iff (a) the intersection matrix (C_i, C_j) is negative definite, and (b) $p_a(D) \leq 0$ for every D supported on $\bigcup C_i$. Note that $p_a(D) = 1 - \chi(\mathcal{O}_D)$ by definition, $2p_a - 2 = D \cdot (D + K)$.

2. Ruled Surfaces

Definition 1. A surface X is ruled if it birational to $\mathbb{P}^1 \times B$ for a singular projective curve B.

Let X be a surface, B a nonsingular projective curve.

Definition 2. A pencil of curves with base B on X is a dominant rational map $\pi: X \dashrightarrow B$ s.t. k(B) is alg. closed in k(X).

Note that this map π is defined on the complement of a finite number of points x_1, \ldots, x_n . If π is not regular at these points, they are called base points of the pencil, and the fibers $\{\pi^{-1}(y)|y \in B\}$ is the family of curves of the pencil π . For η the generic point of B, $\pi^{-1}(\eta)$ is called the generic curve of the pencil π .

Definition 3. A smooth morphism $X \to B$ is called a geometrically ruled surface over B if the fibers are all isomorphic to \mathbb{P}^1 .

Theorem 2 (Noether-Tsen). Let $\pi : X \dashrightarrow B$ be a pencil of curves s.t. the generic curve has arithmetic genus zero. Then X is birational to $\mathbb{P}^1 \times B$ (and the generic fiber of π is $\cong \mathbb{P}^1_{k(B)}$). In particular, X is a ruled surface.

Definition 4. Let K be a field. K has property C_r $(r \ge 0)$ if for every homogeneous polynomial of degree $d \ge 1$ in $n \ge 2$ variables, it has a nonzero solution in K^n whenever $d^r < n$.

Remark. Note that K has property C_0 iff K is alg. closed, and finite fields have property C_1 . Moreover, if K has property C_r , then K has property C_s for $s \ge r$.

Lemma 1. If K has property C_1 , so does every alg. extension of L of K.

Proof. We can assume that L/K is finite. Let F(x) be a homogeneous polynomial of degree d in n variables (d < n) coefficients in L. Let $f(x) = \operatorname{Norm}_{L/K}F(x)$. By choosing a basis e_1, \ldots, e_m (m = [L : K]) of L/K, and setting $x = x_1e_1 + \cdots + x_me_m$ we see that f can be expressed as a homogeneous polynomial of degree md in mn variables. Since d < n, md < m, we have a nontrivial solution $N_{L/K}(F(x)) = 0 \implies F(x) = 0$.

 $\mathbf{2}$

Proposition 1. Let k be algebraically closed. Then k(T) (purely transcendental extension in one variable) has property C_1 .

Proof. Let $f(X_1, \ldots, X_n)$ be a homogeneous polynomial of degree d < n in X_1, \ldots, X_n with coefficients in k(T). We may as well assume that the coefficients are in k[T]. We'll show \exists a nontrivial solution in k[T]. Let $f(x_1, \ldots, X_k) = \sum_{i_1 \cdots i_n} c_{i_1 \cdots i_n} f_{i_1} \cdots f_{i_n} f_{i_n}$ for $c_{i_1 \cdots i_n} \in k[T]$. Let $\mu = \max \deg c_{i_1 \cdots i_n}$ over all coefficients of f. Write

(1)
$$f = f_0(X_1, \dots, X_n) + Y f_1(X_1, \dots, X_n) + \dots + T^{\mu} f_{\mu}(X_1, \dots, X_n)$$

where $f_i \in k[X_1, \ldots, X_n]$. For new variables Y_{10}, \ldots, Y_{ns} (s to be chosen later), write

(2)
$$X_i = Y_{i0} + Y_{i1}T + \dots + Y_{is}T^s$$

and let

(3)
$$\phi(Y_{10}, \cdots, Y_{ns}) = f(\sum_{j=0}^{s} Y_{1j}T^j, \sum Y_{2j}T^j, \dots, \sum Y_{nj}T^j)$$

This has degree $sd + \mu$ in T. Write it as

(4)
$$\phi = \phi_0(Y_{10}, \cdots, Y_{ns}) + T\phi_1(Y_{10}, \cdots, Y_{ns}) + \cdots + T^{sd+\mu}\phi_{sd+\mu}(Y_{10}, \cdots, Y_{ns})$$

i.e. have $ds + \mu + 1$ homogeneous polynomials ϕ_j of degree d in Y_{10}, \dots, Y_{ns} . Since n > d, for large enough s, $n(s+1) > ds + \mu + 1$ and there are more variables than equations. Because k is alg. closed, we have a solution in k.

Proposition 2. Let k be a field, \overline{k} its alg. closure. Let X be an algebraic curve, proper over k.

Proof. Riemann-Roch on K_X , straightforward.

Lemma 2. If, in addition to the hypothesis of proposition, X also has a krational point, then X is k-isomorphic to \mathbb{P}^1_k .

Corollary 1. Let X have property C_1 , and let X be geometrically integral, proper curve over k of arithmetic genus 0. Then $X \cong_k \mathbb{P}^1$.

of Noether-Tsen. Let η be the generic point of B. By the above, the field $k(\eta) = k(B)$ has property C_1 . By assumption, $X_{\eta} = \pi^{-1}(\eta)$ has arithmetic genus 0. Blowing up X enough times, we get $\phi : X' \to X$ and a morphism $X' \to B$ completing $\pi \circ \phi$. Note that this does not change the generic fiber. By assumption, k(B) is algebraically closed in k(X). We see $X_{\eta} = (\eta \circ \phi)(\eta)$ is geometrically integral, and therefore is $k(\eta)$ -isomorphic to $\mathbb{P}^1_{k(\eta)}$. So $k(X_{\eta}) \cong k(\eta)(t)$ for t an independent variable over $k(\eta)$, and X is birational to $\mathbb{P}^1 \times B$. **Theorem 3.** Let $\pi : X \to B$ be a surjective morphism from a surface X to a nonsingular, projective curve B s.t. for some closed point $b \in b$, $\pi^{-1}(b) \cong \mathbb{P}^1$. Then \exists a section $\sigma : B \to X$, an open subset $W \subset B, b \in W$, and an isomorphism $f : \pi^{-1}(W) \to \mathbb{P}^1 \times W$ s.t. the following diagram commutes

(5)
$$\pi^{-1}(W) \xrightarrow{f} \mathbb{P}^{1} \times W$$

$$\downarrow^{\mathrm{pr}_{2}}_{W}$$

Proof. B is a nonsingular curve, and $\pi_*(\mathcal{O}_X)$ is a torsion-free coherent \mathcal{O}_B module, locally free of finite rank (π is flat and $H^1(\pi^{-1}(b), \mathcal{O}_{\pi^{-1}(b)}) = 0$). By the base change theorem, we see that $H^1(\pi^{-1}(b'), \mathcal{O}_{\pi^{-1}(b')}) = 0$ for b' in a neighborhood V of B, and $\pi_*\mathcal{O}_X \otimes k(b) \to H^0(\pi^{-1}(b'), \mathcal{O}_{\pi^{-1}(b')})$ is an isomorphism for $b' \in V$.

(6)
$$\pi^{-1}(b) \cong \mathbb{P}^1 \implies \dim H^0(\pi^{-1}(b'), \mathcal{O}_{\pi^{-1}(b')}) = 1$$

so $\pi_*\mathcal{O}_X$ is locally free of rank 1, i.e. is \mathcal{O}_B . Thus, k(B) is alg. closed in k(X), and $\exists U \subset V$ containing b s.t. $F_{b'} = \pi^{-1}(b')$ is geometrically integral for $b' \in U$. $F_b \cong \mathbb{P}^1$, and the arithmetic genus of $F_{b'}$ does not depend on b', so the generic fiber has arithmetic genus 0 and the closed fibers are \mathbb{P}^1 . Thus, $F_\eta \cong \mathbb{P}^1_{k(\eta)}$.

This implies that F_{η} has a rational point over $k(\eta) = k(B)$, and \exists a morphism Spec $k(B) \to F_{\eta}$ and therefore Spec $\mathcal{O}_{B,\eta} \to X$ a *B*-morphism, giving us a rational section $\sigma : B \to X$. *B* is a nonsingular curve and *X* is projective, so σ extends to a morphism. $\sigma : B \to X$ is a section $(\pi \circ \sigma = \mathrm{id}_B)$. Let $D = \sigma(B)$. Then $D \cdot F_{b'} = 1$ for $b' \in B$. Let $X' = \pi^{-1}(U)$. Since the fibers of π' are \mathbb{P}^1 , and $\mathcal{O}_{X'}(D) \otimes \mathcal{O}_{F_{b'}} \cong \mathcal{O}_{F_{b'}(1)}$, we have $\dim_{k(b')} H^0(\mathcal{O}_X(D) \otimes k(b')) = 2$ for $b' \in U$. Again applying the base change theorem, we have $E = \pi_*(\mathcal{O}_{X'}(D))$ a locally free \mathcal{O}_+U -module of rank 2 and the canonical homomorphism

(7)
$$\pi_*\mathcal{O}_{X'}(b)\otimes k(b')\to H^0(\mathcal{O}_X(D)\otimes \mathcal{O}_{F_{b'}})$$

is an isomorphism for $b' \in U$. Thus $\pi^*\pi_*\mathcal{O}_{X'}(D) = \pi^*(E) \to \mathcal{O}_{X'}(D)$ is surjective. By the universal property of $\mathbb{P}(E)$, we have a unique *U*-morphism $u : X' \to \mathbb{P}(E)$ s.t. $u^*(\mathcal{O}_{\mathbb{P}(E)}(D)) \cong \mathcal{O}_{X'}(D)$. It is clear that u is an isomorphism since it is an isomorphism fiber by fiber $(u_b : F_{b'} \xrightarrow{\sim} \mathbb{P}^1(k(b')))$ and take $b \in W \subset U$ small enough to trivialize $\mathbb{P}(E)$.