MIT OpenCourseWare
http://ocw.mit.edu

18.727 Topics in Algebraic Geometry: Algebraic Surfaces

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

ALGEBRAIC SURFACES, LECTURE 5

LECTURES: ABHINAV KUMAR

1. Examples

(1) If $S \subset \mathbb{P}^{n}, p \in S$, then projection from p gives a rational map $S \rightarrow \mathbb{P}^{n-1}$ defined away from p extending to $\mathrm{Bl}_{p} S=\tilde{S} \rightarrow \mathbb{P}^{n-1}$. For instance, if Q is a smooth quadric in \mathbb{P}^{2}, we get a birational map $Q \rightarrow \mathbb{P}^{2}$ with \mid tilde $Q \rightarrow \mathbb{P}^{2}$ a morphism. It contracts the two lines passing through p, so $Q=\mathbb{P}^{2}(2-1)$.
(2) A birational map of \mathbb{P}^{2} to itself is called a plane Cremona transformation e.g. quadratic transformation. One example is $\phi: \mathbb{P} \rightarrow \mathbb{P}^{2}$ given by $(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)$ It is clearly birational and its own inverse. Let $p=(1: 0: 0), q=(0: 1: 0), r=(0: 0: 1)$. These are the 3 base points of ϕ, and ϕ blows up these points and then blows down the three lines joining them. Similarly, we could take a linear system of 3 independent conics passing through three point p, q, r (non-collinear). Generally, 2 conics passing through p, q, r would have a unique 4th point of intersection, gives the birational map.
(3) Linear systems of cubics: let p_{1}, \ldots, p_{r} be r distinct points in the plane $(r \leq 6)$ in general position, i.e. no 3 of them are collinear and no six lie on a conic. Let $\pi_{r}: P_{r} \rightarrow \mathbb{P}^{2}$ be the blowup of p_{1}, \ldots, p_{r}. Let $d=q-r$. The linear system of cubics passing through p_{1}, \ldots, p_{r} defines an embedding $j: P_{r} \rightarrow \mathbb{P}^{d}$, and $S_{d}=j\left(P_{r}\right)$ is a surface of degree d in \mathbb{P}^{d}, called a del Pezzo surface of degree d. e.g. S_{1} is a

Note. Contracting other curves and singularities: let $f: Y \rightarrow X$ be a resolution of a normal surface singularity $p \in X$ (i.e. X is normal at p). Then $p \subset X$ is called a rational singularity- if $R^{1} f_{*} \mathcal{O}_{Y}=\mathcal{O}$ and $Y \rightarrow X$ is an isomorphism away from $Y \backslash\left\{f^{-1}(p)\right\} \rightarrow X \backslash\{p\}$, e.g. can include nonsingular p as a rational singularity.

Example. The duVal singularities are examples of rational singularities.

$$
\begin{aligned}
& A_{n} x^{2}+y^{2}+z^{n+1}=0 \\
& D_{n} x^{2}+y^{2} z+z^{n-1}=0 \\
& E_{6} x^{2}+y^{3}+z^{4}=0
\end{aligned}
$$

$E_{6} x^{2}+y^{3}+y z^{3}=0$.
$E_{8} x^{2}+y^{3}+z^{5}=0$.
If you resolve these, you get the corresponding Dynkin diagrams for the dual graph of the exceptional curves.

Theorem 1 (Artin Contraction). A connected set of curves $\left\{C_{i}\right\}$ on a surface Y is the exceptional locus of a rational singularity $p \in X$ iff (a) the intersection matrix $\left(C_{i}, C_{j}\right)$ is negative definite, and (b) $p_{a}(D) \leq 0$ for every D supported on $\cup C_{i}$. Note that $p_{a}(D)=1-\chi\left(\mathcal{O}_{D}\right)$ by definition, $2 p_{a}-2=D \cdot(D+K)$.

2. Ruled Surfaces

Definition 1. A surface X is ruled if it birational to $\mathbb{P}^{1} \times B$ for a singular projective curve B.

Let X be a surface, B a nonsingular projective curve.
Definition 2. A pencil of curves with base B on X is a dominant rational map $\pi: X \rightarrow B$ s.t. $k(B)$ is alg. closed in $k(X)$.

Note that this map π is defined on the complement of a finite number of points x_{1}, \ldots, x_{n}. If π is not regular at these points, they are called base points of the pencil, and the fibers $\left\{\pi^{-1}(y) \mid y \in B\right\}$ is the family of curves of the pencil π. For η the generic point of $B, \pi^{-1}(\eta)$ is called the generic curve of the pencil π.

Definition 3. A smooth morphism $X \rightarrow B$ is called a geometrically ruled surface over B if the fibers are all isomorphic to \mathbb{P}^{1}.

Theorem 2 (Noether-Tsen). Let $\pi: X \rightarrow B$ be a pencil of curves s.t. the generic curve has arithmetic genus zero. Then X is birational to $\mathbb{P}^{1} \times B$ (and the generic fiber of π is $\cong \mathbb{P}_{k(B)}^{1}$). In particular, X is a ruled surface.

Definition 4. Let K be a field. K has property $C_{r}(r \geq 0)$ if for every homogeneous polynomial of degree $d \geq 1$ in $n \geq 2$ variables, it has a nonzero solution in K^{n} whenever $d^{r}<n$.

Remark. Note that K has property C_{0} iff K is alg. closed, and finite fields have property C_{1}. Moreover, if K has property C_{r}, then K has property C_{s} for $s \geq r$.

Lemma 1. If K has property C_{1}, so does every alg. extension of L of K.
Proof. We can assume that L / K is finite. Let $F(x)$ be a homogeneous polynomial of degree d in n variables $(d<n)$ coefficients in L. Let $f(x)=\operatorname{Norm}_{L / K} F(x)$. By choosing a basis $e_{1}, \ldots, e_{m}(m=[L: K])$ of L / K, and setting $x=x_{1} e_{1}+$ $\cdots+x_{m} e_{m}$ we see that f can be expressed as a homogeneous polynomial of degree $m d$ in $m n$ variables. Since $d<n, m d<m$, we have a nontrivial solution $N_{L / K}(F(x))=0 \Longrightarrow F(x)=0$.

Proposition 1. Let k be algebraically closed. Then $k(T)$ (purely transcendental extension in one variable) has property C_{1}.

Proof. Let $f\left(X_{1}, \ldots, X_{n}\right)$ be a homogeneous polynomial of degree $d<n$ in X_{1}, \ldots, X_{n} with coefficients in $k(T)$. We may as well assume that the coefficients are in $k[T]$. We'll show \exists a nontrivial solution in $k[T]$. Let $f\left(x_{1}, \ldots, X_{k}\right)=$ $\sum c_{i_{1} \cdots i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}$ for $c_{i_{1} \cdots i_{n}} \in k[T]$. Let $\mu=\max \operatorname{deg} c_{i_{1} \cdots i_{n}}$ over all coefficients of f. Write

$$
\begin{equation*}
f=f_{0}\left(X_{1}, \ldots, X_{n}\right)+Y f_{1}\left(X_{1}, \ldots, X_{n}\right)+\cdots+T^{\mu} f_{\mu}\left(X_{1}, \ldots, X_{n}\right) \tag{1}
\end{equation*}
$$

where $f_{i} \in k\left[X_{1}, \ldots, X_{n}\right]$. For new variables $Y_{10}, \ldots, Y_{n s}$ (s to be chosen later), write

$$
\begin{equation*}
X_{i}=Y_{i 0}+Y_{i 1} T+\cdots+Y_{i s} T^{s} \tag{2}
\end{equation*}
$$

and let

$$
\begin{equation*}
\phi\left(Y_{10}, \cdots, Y_{n s}\right)=f\left(\sum_{j=0}^{s} Y_{1 j} T^{j}, \sum Y_{2 j} T^{j}, \ldots, \sum Y_{n j} T^{j}\right) \tag{3}
\end{equation*}
$$

This has degree $s d+\mu$ in T. Write it as
(4) $\phi=\phi_{0}\left(Y_{10}, \cdots, Y_{n s}\right)+T \phi_{1}\left(Y_{10}, \cdots, Y_{n s}\right)+\cdots+T^{s d+\mu} \phi_{s d+\mu}\left(Y_{10}, \cdots, Y_{n s}\right)$
i.e. have $d s+\mu+1$ homogeneous polynomials ϕ_{j} of degree d in $Y_{10}, \cdots, Y_{n s}$. Since $n>d$, for large enough $s, n(s+1)>d s+\mu+1$ and there are more variables than equations. Because k is alg. closed, we have a solution in k.

Proposition 2. Let k be a field, \bar{k} its alg. closure. Let X be an algebraic curve, proper over k.

Proof. Riemann-Roch on K_{X}, straightforward.
Lemma 2. If, in addition to the hypothesis of proposition, X also has a k rational point, then X is k-isomorphic to \mathbb{P}_{k}^{1}.

Corollary 1. Let X have property C_{1}, and let X be geometrically integral, proper curve over k of arithmetic genus 0 . Then $X \cong_{k} \mathbb{P}^{1}$.
of Noether-Tsen. Let η be the generic point of B. By the above, the field $k(\eta)=$ $k(B)$ has property C_{1}. By assumption, $X_{\eta}=\pi^{-1}(\eta)$ has arithmetic genus 0 . Blowing up X enough times, we get $\phi: X^{\prime} \rightarrow X$ and a morphism $X^{\prime} \rightarrow B$ completing $\pi \circ \phi$. Note that this does not change the generic fiber. By assumption, $k(B)$ is algebraically closed in $k(X)$. We see $X_{\eta}=(\eta \circ \phi)(\eta)$ is geometrically integral, and therefore is $k(\eta)$-isomorphic to $\mathbb{P}_{k(\eta)}^{1}$. So $k\left(X_{\eta}\right) \cong k(\eta)(t)$ for t an independent variable over $k(\eta)$, and X is birational to $\mathbb{P}^{1} \times B$.

Theorem 3. Let $\pi: X \rightarrow B$ be a surjective morphism from a surface X to a nonsingular, projective curve B s.t. for some closed point $b \in b, \pi^{-1}(b) \cong \mathbb{P}^{1}$. Then \exists a section $\sigma: B \rightarrow X$, an open subset $W \subset B, b \in W$, and an isomorphism $f: \pi^{-1}(W) \rightarrow \mathbb{P}^{1} \times W$ s.t. the following diagram commutes

Proof. B is a nonsingular curve, and $\pi_{*}\left(\mathcal{O}_{X}\right)$ is a torsion-free coherent $\mathcal{O}_{B^{-}}$ module, locally free of finite rank $\left(\pi\right.$ is flat and $\left.H^{1}\left(\pi^{-1}(b), \mathcal{O}_{\pi^{-1}(b)}\right)=0\right)$. By the base change theorem, we see that $H^{1}\left(\pi^{-1}\left(b^{\prime}\right), \mathcal{O}_{\pi^{-1}\left(b^{\prime}\right)}\right)=0$ for b^{\prime} in a neighborhood V of B, and $\pi_{*} \mathcal{O}_{X} \otimes k(b) \rightarrow H^{0}\left(\pi^{-1}\left(b^{\prime}\right), \mathcal{O}_{\pi^{-1}\left(b^{\prime}\right)}\right)$ is an isomorphism for $b^{\prime} \in V$.

$$
\begin{equation*}
\pi^{-1}(b) \cong \mathbb{P}^{1} \Longrightarrow \operatorname{dim} H^{0}\left(\pi^{-1}\left(b^{\prime}\right), \mathcal{O}_{\pi^{-1}\left(b^{\prime}\right)}\right)=1 \tag{6}
\end{equation*}
$$

so $\pi_{*} \mathcal{O}_{X}$ is locally free of rank 1, i.e. is \mathcal{O}_{B}. Thus, $k(B)$ is alg. closed in $k(X)$, and $\exists U \subset V$ containing b s.t. $F_{b^{\prime}}=\pi^{-1}\left(b^{\prime}\right)$ is geometrically integral for $b^{\prime} \in U$. $F_{b} \cong \mathbb{P}^{1}$, and the arithmetic genus of $F_{b^{\prime}}$ does not depend on b^{\prime}, so the generic fiber has arithmetic genus 0 and the closed fibers are \mathbb{P}^{1}. Thus, $F_{\eta} \cong \mathbb{P}_{k(\eta)}^{1}$.

This implies that F_{η} has a rational point over $k(\eta)=k(B)$, and \exists a morphism $\operatorname{Spec} k(B) \rightarrow F_{\eta}$ and therefore $\operatorname{Spec} \mathcal{O}_{B, \eta} \rightarrow X$ a B-morphism, giving us a rational section $\sigma: B \rightarrow X . B$ is a nonsingular curve and X is projective, so σ extends to a morphism. $\sigma: B \rightarrow X$ is a section $\left(\pi \circ \sigma=\operatorname{id}_{B}\right)$. Let $D=\sigma(B)$. Then $D \cdot F_{b^{\prime}}=1$ for $b^{\prime} \in B$. Let $X^{\prime}=\pi^{-1}(U)$. Since the fibers of π^{\prime} are \mathbb{P}^{1}, and $\mathcal{O}_{X^{\prime}}(D) \otimes \mathcal{O}_{F_{b^{\prime}}} \cong \mathcal{O}_{F_{b^{\prime}}(1)}$, we have $\operatorname{dim}_{k\left(b^{\prime}\right)} H^{0}\left(\mathcal{O}_{X}(D) \otimes k\left(b^{\prime}\right)\right)=2$ for $b^{\prime} \in U$. Again applying the base change theorem, we have $E=\pi_{*}\left(\mathcal{O}_{X^{\prime}}(D)\right)$ a locally free $\mathcal{O}_{+} U$-module of rank 2 and the canonical homomorphism

$$
\begin{equation*}
\pi_{*} \mathcal{O}_{X^{\prime}}(b) \otimes k\left(b^{\prime}\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(D) \otimes \mathcal{O}_{F_{b^{\prime}}}\right) \tag{7}
\end{equation*}
$$

is an isomorphism for $b^{\prime} \in U$. Thus $\pi^{*} \pi_{*} \mathcal{O}_{X^{\prime}}(D)=\pi^{*}(E) \rightarrow \mathcal{O}_{X^{\prime}}(D)$ is surjective. By the universal property of $\mathbb{P}(E)$, we have a unique U-morphism $u: X^{\prime} \rightarrow \mathbb{P}(E)$ s.t. $u^{*}\left(\mathcal{O}_{\mathbb{P}(E)}(D)\right) \cong \mathcal{O}_{X^{\prime}}(D)$. It is clear that u is an isomorphism since it is an isomorphism fiber by fiber $\left(u_{b}: F_{b^{\prime}} \xrightarrow{\sim} \mathbb{P}^{1}\left(k\left(b^{\prime}\right)\right)\right)$ and take $b \in W \subset U$ small enough to trivialize $\mathbb{P}(E)$.

