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ALGEBRAIC SURFACES, LECTURE 5 

LECTURES: ABHINAV KUMAR 

1. Examples 

(1) If S ⊂ Pn, p ∈ S, then projection from p gives a rational map S ��� Pn−1 

defined away from p extending to BlpS = S̃ Pn−1 . For instance, if →
Q is a smooth quadric in P2 , we get a birational map Q ��� P2 with 
|tildeQ → P2 a morphism. It contracts the two lines passing through p, 
so Q = P2(2 − 1). 

(2) A birational map of P2 to itself is called a plane Cremona transformation 
e.g. quadratic transformation. One example is φ : P ��� P2 given by 
(x : y : z) �→ ( 1 : 1 : 1 ) It is clearly birational and its own inverse. 

x y z 

Let p = (1 : 0 : 0), q = (0 : 1 : 0), r = (0 : 0 : 1). These are the 
3 base points of φ, and φ blows up these points and then blows down 
the three lines joining them. Similarly, we could take a linear system of 
3 independent conics passing through three point p, q, r (non-collinear). 
Generally, 2 conics passing through p, q, r would have a unique 4th point 
of intersection, gives the birational map. 

(3) Linear systems of cubics: let p1, . . . , pr be r distinct points in the plane 
(r ≤ 6) in general position, i.e. no 3 of them are collinear and no six lie on 
a conic. Let πr : Pr → P2 be the blowup of p1, . . . , pr. Let d = q − r. The 
linear system of cubics passing through p1, . . . , pr defines an embedding 
j : Pr Pd, and Sd = j(Pr) is a surface of degree d in Pd, called a del →
Pezzo surface of degree d. e.g. S1 is a 

Note. Contracting other curves and singularities: let f : Y X be a resolution →
of a normal surface singularity p ∈ X (i.e. X is normal at p). Then p ⊂ X is 
called a rational singularity— if R1f∗OY = O and Y → X is an isomorphism 
away from Y � {f−1(p)} → X � {p}, e.g. can include nonsingular p as a rational 
singularity. 

Example. The duVal singularities are examples of rational singularities. 

An x2 + y2 + zn+1 = 0

Dn x2 + y2z + zn−1 = 0.

E6 x2 + y3 + z4 = 0.
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E6 x2 + y3 + yz3 = 0. 
E8 x2 + y3 + z5 = 0. 

If you resolve these, you get the corresponding Dynkin diagrams for the dual 
graph of the exceptional curves. 

Theorem 1 (Artin Contraction). A connected set of curves {Ci} on a surface 
Y is the exceptional locus of a rational singularity p ∈ X iff (a) the intersection 
matrix (Ci, Cj ) is negative definite, and (b) pa(D) ≤ 0 for every D supported on � 

Ci. Note that pa(D) = 1 − χ(OD) by definition, 2pa − 2 = D (D + K).· 

2. Ruled Surfaces 

Definition 1. A surface X is ruled if it birational to P1 × B for a singular 
projective curve B. 

Let X be a surface, B a nonsingular projective curve. 

Definition 2. A pencil of curves with base B on X is a dominant rational map 
π : X ��� B s.t. k(B) is alg. closed in k(X). 

Note that this map π is defined on the complement of a finite number of points 
x1, . . . , xn. If π is not regular at these points, they are called base points of the 
pencil, and the fibers {π−1(y)|y ∈ B} is the family of curves of the pencil π. For 
η the generic point of B, π−1(η) is called the generic curve of the pencil π. 

Definition 3. A smooth morphism X B is called a geometrically ruled surface → 
over B if the fibers are all isomorphic to P1 . 

Theorem 2 (Noether-Tsen). Let π : X ��� B be a pencil of curves s.t. the 
generic curve has arithmetic genus zero. Then X is birational to P1 × B (and 
the generic fiber of π is ∼ k(B)). In particular, X is a ruled surface. = P1 

Definition 4. Let K be a field. K has property Cr (r ≥ 0) if for every homo
geneous polynomial of degree d ≥ 1 in n ≥ 2 variables, it has a nonzero solution 
in Kn whenever dr < n. 

Remark. Note that K has property C0 iff K is alg. closed, and finite fields have 
property C1. Moreover, if K has property Cr, then K has property Cs for s ≥ r. 

Lemma 1. If K has property C1, so does every alg. extension of L of K. 

Proof. We can assume that L/K is finite. Let F (x) be a homogeneous polynomial 
of degree d in n variables (d < n) coefficients in L. Let f(x) = NormL/K F (x). 
By choosing a basis e1, . . . , em (m = [L : K]) of L/K, and setting x = x1e1 + 

+ xmem we see that f can be expressed as a homogeneous polynomial of · · · 
degree md in mn variables. Since d < n,md < m, we have a nontrivial solution 
NL/K (F (x)) = 0 = F (x) = 0. �⇒ 
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Proposition 1. Let k be algebraically closed. Then k(T ) (purely transcendental 
extension in one variable) has property C1. 

Proof. Let f(X1, . . . , Xn) be a homogeneous polynomial of degree d < n in 
X1, . . . , Xn with coefficients in k(T ). We may as well assume that the coeffi
cients are in k[T ]. We’ll show ∃ a nontrivial solution in k[T ]. Let f(x1, . . . , Xk) = 

ci1···in X1 
i1 · · · Xn

in for ci1···in ∈ k[T ]. Let µ = max deg ci1···in over all coefficients 
of f . Write 

(1) f = f0(X1, . . . , Xn) + Y f1(X1, . . . , Xn) + + T µfµ(X1, . . . , Xn)· · · 

where fi ∈ k[X1, . . . , Xn]. For new variables Y10, . . . , Yns (s to be chosen later), 
write 

(2) Xi = Yi0 + Yi1T + + YisT s · · · 

and let 
s

(3) φ(Y10, , Yns) = f( Y1j T j , Y2j T j , . . . , Ynj T j )· · · 
j=0 

This has degree sd + µ in T . Write it as 

(4) φ = φ0(Y10, , Yns) + Tφ1(Y10, , Yns) + + T sd+µφsd+µ(Y10, , Yns)· · · · · · · · · · · · 

i.e. have ds+µ+1 homogeneous polynomials φj of degree d in Y10, , Yns. Since· · · 
n > d, for large enough s, n(s + 1) > ds + µ + 1 and there are more variables 
than equations. Because k is alg. closed, we have a solution in k. � 

Proposition 2. Let k be a field, k its alg. closure. Let X be an algebraic curve, 
proper over k. 

Proof. Riemann-Roch on KX , straightforward. � 

Lemma 2. If, in addition to the hypothesis of proposition, X also has a k-
rational point, then X is k-isomorphic to P1 

k. 

Corollary 1. Let X have property C1, and let X be geometrically integral, proper 
curve over k of arithmetic genus 0. Then X ∼ .=k P1 

of Noether-Tsen. Let η be the generic point of B. By the above, the field k(η) = 
k(B) has property C1. By assumption, Xη = π−1(η) has arithmetic genus 0. 
Blowing up X enough times, we get φ : X � X and a morphism X � B→ →
completing π φ. Note that this does not change the generic fiber. By assumption, ◦
k(B) is algebraically closed in k(X). We see Xη = (η φ)(η) is geometrically 
integral, and therefore is k(η)-isomorphic to P1 

k(η). So k
◦
(Xη) ∼ k(η)(t) for t an= 

independent variable over k(η), and X is birational to P1 × B. � 
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Theorem 3. Let π : X B be a surjective morphism from a surface X to a→
nonsingular, projective curve B s.t. for some closed point b ∈ b, π−1(b) ∼ P1 = . 
Then ∃ a section σ : B X, an open subset W ⊂ B, b ∈ W , and an isomorphism 
f : π−1(W ) → P1 × W 

→
s.t. the following diagram commutes 

f 

(5) 

π−1(W )
���������

P

�� 

1 × W 

pr2
π 

W 

Proof. B is a nonsingular curve, and π∗(OX ) is a torsion-free coherent OB 
module, locally free of finite rank (π is flat and H1(π−1(b), Oπ−1(b)) = 0). By 
the base change theorem, we see that H1(π−1(b�), Oπ−1(b�)) = 0 for b� in a neigh
borhood V of B, and π∗OX ⊗ k(b) → H0(π−1(b�), Oπ−1(b�)) is an isomorphism for 
b� ∈ V . 

= P1(6) π−1(b) ∼ = ⇒ dim H0(π−1(b�), Oπ−1(b�)) = 1 

so π∗OX is locally free of rank 1, i.e. is OB. Thus, k(B) is alg. closed in k(X), 
and ∃U ⊂ V containing b s.t. Fb� = π−1(b�) is geometrically integral for b� ∈ U . 
Fb = P1, and the arithmetic genus of Fb� does not depend on b�, so the generic∼
fiber has arithmetic genus 0 and the closed fibers are P1 . = P1 

k(η).Thus, Fη 
∼

This implies that Fη has a rational point over k(η) = k(B), and ∃ a morphism 
Spec k(B) Fη and therefore Spec OB,η X a B-morphism, giving us a ra→ →
tional section σ : B ��� X. B is a nonsingular curve and X is projective, so σ 
extends to a morphism. σ : B X is a section (π σ = idB ). Let D = σ(B).→ ◦
Then D Fb� = 1 for b� ∈ B. Let X � = π−1(U). Since the fibers of π� are P1, and· 

= OFb� (1), we have dim k(b�)H
0(OX (D) ⊗ k(b�)) = 2 for b� ∈ U .OX� (D) ⊗ OFb� 

∼
Again applying the base change theorem, we have E = π∗(OX� (D)) a locally free 
O+U -module of rank 2 and the canonical homomorphism 

(7) π∗OX� (b) ⊗ k(b�) → H0(OX (D) ⊗OFb� 
) 

is an isomorphism for b� ∈ U . Thus π∗π∗OX� (D) = π∗(E) → OX� (D) is sur
jective. By the universal property of P(E), we have a unique U -morphism 
u : → P(E) s.t. = OX� (D). It is clear that u is an iso-X � u∗(OP(E)(D)) ∼
morphism since it is an isomorphism fiber by fiber (ub : Fb� 

∼ P1(k(b�))) and 
take b ∈ W ⊂ U small enough to trivialize P(E). 

→ 
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