
CH,I) EXERCISES AND FURTHER RESULTS

A. Manifolds

1. Let M be a paracompact manifold, A and B disjoint closed subsets
of M. Then there exists a function f E C-(M) such that f - I on A,
f- 0 on B.

2. Let M be a connected manifold and p, q two points in M. Then
there exists a diffeomorphism · of M onto itself such that i(p) = q.

3. Let M be a Hausdorff space and let 8 and ' be two differentiable
structures on M. Let and ' denote the corresponding sets of CO
functions. Then = ' if and only if a = a'.

Deduce that the real line R with its ordinary topology has infinitely
many different differentiable structures.

4. Let · be a differentiable mapping of a manifold M onto a manifold
N. A vector field X on M is called projectable (Koszul [1]) if there exists
a vector field Y on N such that do · X = Y.

(i) Show that X is projectable if and only if XiO C U0where o-=
{f o :f e C(N)}.

(ii) A necessary condition for X to be projectable is that

dO,(X,) = d (X) (1)

whenever (p) = O(q). If, in addition, dp(Mp) = N,,() for each
p e M, this condition is also sufficient.

(iii) Let M = R with the usual differentiable structure and let N
be the topological space R with the differentiable structure obtained
by requiring the homeomorphism : x -* x/ 3 of M onto N to be a
diffeomorphism. In this case the identity mapping : x - x is a
differentiable mapping of M onto N. The vector field X = aOx on M
is not projectable although (1) is satisfied.

S. Deduce from §3.1 that diffeomorphic manifolds have the same
dimension.

7. Let M be a manifold, p e M, and X a vector field on M such that
X p O. Then there exists a local chart {xl, ..., xm}on a neighborhood
U of p such that X = ,'Oxx on U. Deduce that the differential equation
Xu = f (f e Cr(M)) has a solution u in a neighborhood of p.



8. Let M be a manifold and X, Y two vector fields both 0 at a
point o M. For p close to o and s, t R sufficiently small let qp(p)
and kt(p)denote the integral curves through p of X and Y, respectively.
Let

y(t)= - (( (o))))
Prove that

[X, rV]o= lim (t)

(Hint: The curves t --* 9pv((p)) and t -- g+s,(p) must coincide; deduce
(X"f)(p) = [dn'dtnf( · p)] =0).

B. The Lie Derivative and the Interior Product

1. Let M be a manifold, X a vector field on M. The Lie derivative
O(X): Y * [X, Y] which maps 1 (M) into itself can be extended
uniquely to a mapping of Z(M) into itself such that:

(i) (X)f = Xf forf e C"(M).
(ii) (X) is a derivation of )(M) preserving type of tensors.

(iii) (X) commutes with contractions.

2. Let 0 be a diffeomorphism of a manifold M onto itself. Then 
induces a unique type-preserving automorphism T - ' T of the
tensor algebra (M) such that:

(i) The automorphism commutes with contractions.

(ii) -.X = X¢, (XE 21(M)),0 .f = f, (f Co(M)).

Prove that ·.o = (l-1)* w for EcO*(M).
3. Let g be a one-parameter Lie transformation group of M and

denote by X the vector field on M induced by gt (Chapter II, §3). Then

O(X)T= lim (T --g, T)
t.0 t

for each tensor field T on M (gt, T is defined in Exercise 2).

4. The Lie derivative (X) on a manifold M has the following
properties:

(i) ([X, Y]) = (X) (I7) - O(Y) (X), X, YE a (M).
(ii) (X) commutes with the alternation A : ,(M)-, 9(M) and

therefore induces a derivation of the Grassmann algebra of M.
(iii) (X) d = d(X), that is, (X) commutes with exterior differen-

tiation.
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5. For X e Zl(M) there is a unique linear mapping i(X): 9(M) --
(M), the interiorproduct, satisfying:

(i) i(X)f = 0 for f E C-(M).
(ii) i(X)w = w(X) for w e I,9(M).

(iii) i(X): I,(M) --* %r_(M) and

i(X) (w, A ,2)= i(X) (w,) A w2+ (- 1) w, A i(X) (2,)

if WoE 9,(M), W2 GW(M).

6. (cf. H. Cartan [1]). Prove that if X, Y E DI(M), wI, ..., w%E91(M),

(i) i(X) 2 = 0.

(ii) i(X)(l A ... A or) = (-)+ 1 k(X) A ... A , A ... A w.;

Wie 9 1(M)

(iii) i([X, Y]) = O(X)i(Y) - i(Y) O(X).

(iv) (X) = i(X) d + d i(X).

C. Affine Connections

2. Let V be the affine connection on Rn determined by Vx(Y) = 0
for X = 'ax,, Y = /alx,, I < i, j < n. Find the corresponding
affine transformations.

4. Let M be a manifold with a torsion-free affine connection V.
Suppose X1, ..., X, is a basis for the vector fields on an open subset
U of M. Let the forms 1 , ..., wm on U be determined by wo(Xj) = St.

Prove the formula

dO= t A Vx,(O)

for each differential form on U.

if Let S be a surface in R3, X and Y two vector fields on S. Let s E S,
X s 0 and t -- y(t) a curve on S through s such that (t) = X(,
y(O) = s. Viewing Y() as a vector in R3 and letting r,s : R3 - S, denote
the orthogonal projection put

VxY) = (i o t (Y'(t- Y.)) .

Prove that this defines an affine connection on S.
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D. Submanifolds

1. Let M and N be differentiable manifolds and U a differentiable
mapping of M into N. Consider the mapping 5o: m -- (m, ¢(m)) (m E M)
and the graph

G, = {(m, 0(m)): me M}

of O with the topologyinduced by the product space M x N. Then 5
is a homeomorphism of M onto G. and if the differentiable structure
of M is transferred to Go by A, the graph G. becomes a closed sub-
manifold of M x N.

2. Let N be a manifold and M a topological space, M C N (as sets).

Show that there exists at most one differentiable structure on the
topological space M such that M is a submanifold of N.

3. Using the figure 8 as a subset of R2 show that
(i) A closed connected submanifold of a connected manifold does

not necessarily carry the relative topology.
(ii) A subset M of a connected manifold N may have two different

topologies and differentiable structures such that in both cases M is a
submanifold of N.

4. Let M be a submanifold of a manifold N and suppose M = N
(as sets). Assuming M to have a countable basis for the open sets, prove
that M = N (as manifolds). (Use Prop. 3.2 and Lemma 3.1, Chapter II.)



E. The Hyperbolic Plane

1. Let D be the open disk z I < I in R2 with the usual differentiable
structure but given the Riemannian structure

(u, v)g(u, ) ( (, v(u, D)

( , ) denoting the usual inner product on R2.

(i) Show that the angle between u and v in the Riemannian structure g
coincides with the Euclidean angle.

(ii) Show that the Riemannian structure can be written

dx9 - dy s

g =9 1 _ x _ Y8) (z = + i).

(iii) Show that the arc length L satisfies

L(yo) < L(y)

if y is any curve joining the origin 0 and x (O < x < 1) and yo(t) = tx

(O< t < ).
(iv) Show that the transformation

ax - b
z +b ((Ia 1g - Ibl = 1)

is an isometry of D.

(v) Deduce from (iii) and (iv) that the geodesics in D are the circular

arcs perpendicular to the boundary I z I = 1.

(vi) Prove from (iii) that

d(O,z) = 2log 1 i ( eD)

and using (iv) that

d(Z, Z,)= log ( -- b: -b ) (z, z eD)

with b, and b2 as in the figure.

(vii) Show that the maps p in (iv) together with the complex con-
jugation z - z generate the group of all isometries of D.
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