CH,I, EXERCISES AND FURTHER RESULTS

A. Manifolds
2. Let M be a connected manifold and p, q two points in M. Then there exists a diffeomorphism Φ of M onto itself such that $\Phi(p)=q$.
3. Let M be a Hausdorff space and let δ and δ^{\prime} be two differentiable structures on M. Let \mathscr{F} and \mathfrak{F}^{\prime} denote the corresponding sets of C^{∞} functions. Then $\delta=\delta^{\prime}$ if and only if $\mathfrak{F}=\mathscr{F}^{\prime}$.

Deduce that the real line \boldsymbol{R} with its ordinary topology has infinitely many different differentiable structures.
4. Let Φ be a differentiable mapping of a manifold M onto a manifold N. A vector field X on M is called projectable (Koszul [1]) if there exists a vector field Y on N such that $d \Phi \cdot X=Y$.
(i) Show that X is projectable if and only if $X \mathscr{F}_{0} \subset \mathscr{F}_{0}$ where $\mathscr{F}_{0}=$ $\left\{f \circ \Phi: f \in C^{\infty}(N)\right\}$.
(ii) A necessary condition for X to be projectable is that

$$
\begin{equation*}
d \Phi_{p}\left(X_{p}\right)=d \Phi_{q}\left(X_{q}\right) \tag{1}
\end{equation*}
$$

whenever $\Phi(p)=\Phi(q)$. If, in addition, $d \Phi_{p}\left(M_{p}\right)=N_{\Phi(p)}$ for each $p \in M$, this condition is also sufficient.
(iii) Let $M=R$ with the usual differentiable structure and let N be the topological space \boldsymbol{R} with the differentiable structure obtained by requiring the homeomorphism $\psi: x \rightarrow x^{1 / 3}$ of M onto N to be a diffeomorphism. In this case the identity mapping $\Phi: x \rightarrow x$ is a differentiable mapping of M onto N. The vector field $X=\partial_{j} \partial x$ on M is not projectable although (1) is satisfied.
5. Deduce from $\S 3.1$ that diffeomorphic manifolds have the same dimension.
7. Let M be a manifold, $p \in M$, and X a vector field on M such that $X_{n} \neq 0$. Then there exists a local chart $\left\{x_{1}, \ldots, x_{m}\right\}$ on a neighborhood U of p such that $X=\partial_{i} \partial x_{1}$ on U. Deduce that the differential equation $X u=f\left(f \in C^{\infty}(M)\right)$ has a solution u in a neighborhood of p.
8. Let M be a manifold and X, Y two vector fields both $\neq 0$ at a point $o \in M$. For p close to o and $s, t \in R$ sufficiently small let $\varphi_{s}(p)$ and $\psi_{l}(p)$ denote the integral curves through p of X and Y, respectively. Let

$$
\gamma(t)=\psi_{-\sqrt{i} t}\left(\varphi_{-\sqrt{ }(}\left(\psi_{\sqrt{t}}\left(\varphi_{\sqrt{t}}(o)\right)\right)\right) .
$$

Prove that

$$
[X, Y]_{0}=\lim _{t \rightarrow 0} \dot{\gamma}(t)
$$

(Hint: The curves $t \rightarrow \varphi_{t}\left(\varphi_{s}(p)\right)$ and $t \rightarrow \varphi_{t+s}(p)$ must coincide; deduce $\left.\left(X^{n} f\right)(p)=\left[d^{n} d t^{n} f\left(\varphi_{i} \cdot p\right)\right]_{t=0}\right)$.

B. The Lie Derivative and the Interior Product

1. Let M be a manifold, X a vector field on M. The Lie derivative $\theta(X): Y \rightarrow[X, Y]$ which maps $\mathcal{D}^{1}(M)$ into itself can be extended uniquely to a mapping of $\mathcal{D}(M)$ into itself such that:
(i) $\theta(X) f=X f$ for $f \in C^{\infty}(M)$.
(ii) $\theta(X)$ is a derivation of $\mathfrak{D}(M)$ preserving type of tensors.
(iii) $\theta(X)$ commutes with contractions.
2. Let Φ be a diffeomorphism of a manifold M onto itself. Then Φ induces a unique type-preserving automorphism $T \rightarrow \Phi \cdot T$ of the tensor algebra $\mathfrak{D}(M)$ such that:
(i) The automorphism commutes with contractions.
(ii) $\Phi \cdot X=X^{\Phi},\left(X \in \mathfrak{D}^{1}(M)\right), \Phi \cdot f=f^{\Phi},\left(f \in C^{\infty}(M)\right)$.

Prove that $\Phi \cdot \omega=\div\left(\Phi^{-1}\right)^{*} \omega$ for $\omega \in \mathcal{D}_{*}(M)$.
3. Let g_{t} be a one-parameter Lie transformation group of M and denote by X the vector field on M induced by g_{t} (Chapter II, §3). Then

$$
\theta(X) T=\lim _{t \rightarrow 0} \frac{1}{t}\left(T-g_{t} \cdot T\right)
$$

for each tensor field T on $M\left(g_{i} \cdot T\right.$ is defined in Exercise 2).
4. The Lie derivative $\theta(X)$ on a manifold M has the following properties:
(i) $\theta([X, Y])=\theta(X) \theta(Y)-\theta(Y) \theta(X), \quad X, Y \in D^{1}(M)$.
(ii) $\theta(X)$ commutes with the alternation $A: \mathfrak{D}_{*}(M) \rightarrow \mathfrak{Y}(M)$ and therefore induces a derivation of the Grassmann algebra of M.
(iii) $\theta(X) d=d \theta(X)$, that is, $\theta(X)$ commutes with exterior differentiation.
5. For $X \in \mathfrak{D}^{1}(M)$ there is a unique linear mapping $i(X): \mathfrak{a}(M) \rightarrow$ $\mathfrak{g}(M)$, the interior product, satisfying:
(i) $i(X) f=0$ for $f \in C^{\infty}(M)$.
(ii) $i(X) \omega=\omega(X)$ for $\omega \in \mathfrak{U}_{1}(M)$.
(iii) $i(X): \mathscr{\mathscr { r }}_{r}(M) \rightarrow \mathscr{\mathscr { U }}_{r-1}(M)$ and

$$
i(X)\left(\omega_{1} \wedge \omega_{2}\right)=i(X)\left(\omega_{1}\right) \wedge \omega_{2}+(-1)^{r} \omega_{1} \wedge i(X)\left(\omega_{2}\right)
$$

if $\omega_{1} \in \mathfrak{Q}_{r}(M), \omega_{2} \in \mathfrak{A}(M)$.
6. (cf. H. Cartan [1]). Prove that if $X, Y \in \mathfrak{D}^{1}(M), \omega_{1}, \ldots, \omega_{r} \in \mathfrak{M}_{1}(M)$,
(i) $i(X)^{2}=0$.
(ii) $i(X)\left(\omega_{1} \wedge \ldots \wedge \omega_{r}\right)=\sum_{1<k \Sigma_{r}}(-1)^{k+1} \omega_{k}(X) \omega_{1} \wedge \ldots \wedge \hat{\omega}_{k} \wedge \ldots \wedge \omega_{r} ;$

$$
\omega_{i} \in \mathfrak{R}_{1}(M)
$$

(iii) $i([X, Y])=\theta(X) i(Y)-i(Y) \theta(X)$.
(iv) $\theta(X)=i(X) d+d i(X)$.

C. Affine Connections

2. Let ∇ be the affine connection on R^{n} determined by $\nabla_{\boldsymbol{x}}(Y)=0$ for $X=\partial_{i}^{\prime} \partial x_{i}, \quad Y=\partial / \partial x_{j}, \quad 1 \leqslant i, j \leqslant n$. Find the corresponding affine transformations.
3. Let M be a manifold with a torsion-free affine connection ∇. Suppose X_{1}, \ldots, X_{m} is a basis for the vector fields on an open subset U of M. Let the forms $\omega^{1}, \ldots, \omega^{m}$ on U be determined by $\omega^{i}\left(X_{j}\right)=\delta^{i}{ }_{j}$. Prove the formula

$$
d \theta=\sum_{i=1}^{m} \omega^{i} \wedge \nabla_{x_{i}}(\theta)
$$

for each differential form θ on U.
5. Let S be a surface in R^{3}, X and Y two vector fields on S. Let $s \in S$, $X_{s} \neq 0$ and $t \rightarrow \gamma(t)$ a curve on S through s such that $\dot{\gamma}(t)=X_{\gamma(t)}$, $\gamma(0)=s$. Viewing $Y_{\nu(1)}$ as a vector in \boldsymbol{R}^{3} and letting $\pi_{g}: \boldsymbol{R}^{3} \rightarrow S_{s}$ denote the orthogonal projection put

$$
\nabla_{x}^{\prime}(Y)_{s}=\pi_{s}\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{\nu(t)}-Y_{s}\right)\right)
$$

Prove that this defines an affine connection on S.

D. Submanifolds

1. Let M and N be differentiable manifolds and Φ a differentiable mapping of M into N. Consider the mapping $\varphi: m \rightarrow(m, \Phi(m))(m \in M)$ and the graph

$$
\boldsymbol{G}_{\Phi}=\{(\boldsymbol{m}, \Phi(\boldsymbol{m})): \boldsymbol{m} \in M\}
$$

of Φ with the topology induced by the product space $M \times N$. Then φ is a homeomorphism of M onto G_{Φ} and if the differentiable structure of M is transferred to G_{ϕ} by φ, the graph G_{ϕ} becomes a closed submanifold of $M \times N$.
2. Let N be a manifold and M a topological space, $M \subset N$ (as sets).

Show that there exists at most one differentiable structure on the topological space M such that M is a submanifold of N.
3. Using the figure 8 as a subset of \boldsymbol{R}^{2} show that
(i) A closed connected submanifold of a connected manifold does not necessarily carry the relative topology.
(ii) A subset M of a connected manifold N may have two different topologies and differentiable structures such that in both cases M is a submanifold of N.
4. Let M be a submanifold of a manifold N and suppose $M=N$ (as sets). Assuming M to have a countable basis for the open sets, prove that $M=N$ (as manifolds). (Use Prop. 3.2 and Lemma 3.1, Chapter II.)

1. Let D be the open disk $|z|<1$ in R^{2} with the usual differentiable structure but given the Riemannian structure

$$
g(u, v)=\frac{(u, v)}{\left(1-|z|^{2}\right)^{2}} \quad\left(u, v \in D_{z}\right)
$$

$($,$) denoting the usual inner product on \boldsymbol{R}^{2}$.
(i) Show that the angle between u and v in the Riemannian structure g coincides with the Euclidean angle.
(ii) Show that the Riemannian structure can be written

$$
g=\frac{d x^{2}+d y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}} \quad(z=x+i y) .
$$

(iii) Show that the arc length L satisfies

$$
L\left(\gamma_{0}\right) \leqslant L(\gamma)
$$

if γ is any curve joining the origin 0 and $x(0<x<1)$ and $\gamma_{0}(t)=t x$ $(0 \leqslant t \leqslant 1)$.
(iv) Show that the transformation

$$
\varphi: z \rightarrow \frac{a z+b}{\bar{b} z+\bar{a}} \quad\left(|a|^{2}-|b|^{2}=1\right)
$$

is an isometry of D.
(v) Deduce from (iii) and (iv) that the geodesics in D are the circular arcs perpendicular to the boundary $|z|=1$.
(vi) Prove from (iii) that

$$
d(0, z)=\frac{1}{2} \log \frac{1+|z|}{1-|z|} \quad(z \in D)
$$

and using (iv) that

$$
d\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \left(\frac{z_{1}-b_{2}}{z_{1}-b_{1}}: \frac{z_{2}-b_{2}}{z_{2}-b_{1}}\right) \quad\left(z_{1}, z_{2} \in D\right)
$$

with b_{1} and b_{2} as in the figure.

(vii) Show that the maps φ in (iv) together with the complex conjugation $z \rightarrow \bar{z}$ generate the group of all isometries of D.

