
SOLUTIONS TO EXERCISES

CHAPTER I

A. Manifolds

A.1. First take a covering {V,},l of A by open relatively compact
sets V disjoint from B. Then take a covering {Vs}B,Jof the closed set
M- U., V. by open relatively compact sets VB disjoint from A.
The covering {V.},,, {VB}l6. of M has a locally finite refinement {W,},.r.
If {p},r is a partition of unity subordinate to this covering, put f =
Zys*', 'v.

A.2. If P, P2E M are sufficiently close within a coordinate neigh-
borhood U, there exists a diffeomorphismmapping p, to Pa and leaving
M - U pointwise fixed. Now consider a curve segment y(t) (0 t 1)
in M joining p to q. Let t be the supremum of those t for which there
exists a diffeomorphism of M mapping p on y(t). The initial remark
shows first that t* > 0, next that t* = 1, and finally that t* is reached
as a maximum.

A.3. The "only if" is obvious and "if" follows from the uniqueness
in Prop. 1.1. Now let E = Co(R) where R is given the ordinary differen-
tiable structure. If n is an odd integer, let n'denote the set of functions
x -- f(x") on R, fe a being arbitrary. Then " satisfies Wl, 9, 1a.
Since " : " for n m, the corresponding 8 are all different.

A.4. (i) If d · X = Y and f Co(N), then X(f o ) =
(Yf) o P E . On the other hand, suppose Xo C a0. If F e 0o,then
F = g o · whereg EC°(N) is unique. If f Co(N), then X(f o ) =
g o P (g E CO(N) unique), and f -- g is a derivation, giving Y.

(ii) If d X = Y, then Y,(,) = d,(X,), so necessity follows.
Suppose dp(Mp) = Nv(,) for each p M. Define for r N, Y, =
dO,(X,) if r = (p). In order to show that Y: r -- Y, is differentiable
we use , coordinates around p and around
r = 0(p) such that ! has the expression (xl,... , x,) - (x, ..., x,).
Writing

X = a(x',.... a1' ~~Ox,'
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we have for q sufficiently near p

dO,(X) - a=(-g, *...,x,(q)) 

so condition (1) implies that for 1 i < n, a is constant in the last
m - n arguments. Hence

Y = a,(x, ..., ,x,+i(p) ..., xm(P))axxp

(iii)f EC'(N) if and only if f o ~ E C'(R). If f (x) = x, then
f o O(x) = x, (f' o 0)(x) = 3xt, so f E CO(N), f' 0 C'(N). Hence
f o 4 e Yo,but X(f o 0) 0 a0; so by (i), X is not projectable.

A.S. Obvious.

A.7. We can assume M = R", p = 0, and that X = (alat1)o in
terms of the standard coordinate system {t,, ..., tm} on Rm. Consider the
integral curve p(0, cs, ..., cm) of X through (0, c2, ..., cm). Then the
mapping 4: (cl,.- , cm) --~ p(O, c,... , c) is C for small cq,

(0 C2, ., Cm)= (0, C, ..., C.), SO

o() = (t(i >1)
Also

~do (AC) C () = Xo=

Thus 0 can be inverted near 0, so {c, ..., c} is a local coordinate system.
Finally, if c = (c, ..., c,),

) (a(f)o)ac,

= limh [f( C(0,C2, ..., C)) - f(P,(, C2, ..., C)]

= (Xf)(0(c))

sox = alac.
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A.8. Let f C°(M). Writing below when in an equality we omit
terms of higher order in s or t, we have

f(0-t(P-,(.(.(o)))))- f(o)
= f(_.(qLs((O,(qo())))) --f(s(bt,((oO))))

+f(o--_,((,(o))))-f(,((o)))
+ f(O t(p(o)))- f(p8 (o))+ f(%(o))- f(o)

, -t(Yf)(i(/t(p(o)))) + t'(Yf)(p._,(iA(pa(o))))
- s(Xf)(,(r,(o)))+ is(X2 )(s/(,(o)))
+ t(Yf)(J(p,(o)))- t(Yfl)(O,(?,(o))
+ s(Xf)(rp,(o)) -- is()((o))

, st(XYf)(,(p(o))) - st(YXf)(0,(,0(o))).

This last expression is obtained by pairing off the 1st and 5th term, the
3rd and 7th, the 2nd and 6th, and the 4th and 8th. Hence

f(y(t2)) - f(o) = t2([X, Y]f)(o) + O(t3).

A similar proof is given in Faber [1].

B. The Lie Derivative and the Interior Product

B.I. If the desired extension of O(X)exists and if C: D(M) -- C-(M)
is the contraction, then (i), (ii), (iii) imply

(O(X)owXY)= X(ow(Y)) - ([X, Y]), X, Y e DI(M).

Thus we define (X) on D(M) by this relation and note that
(O(X)o)(fY) =f((X)(w))(Y) (fe C (M)), so (X) Z,(M)C Z1(M).
If U is a coordinate neighborhood with coordinates {xl, ..., x.}, (X)
induces an endomorphism of C"(U), '(U), and ,(U). Putting Xi =
alaxi, w = dxj, each T e ,( U) can be written

T = T().i()Xi®...®Xi,® ,,0... ®W,
with unique coefficients T().(j) E CO(U). Now O(X) is uniquely extended
to (U) satisfying (i) and (ii). Property (iii) is then verified by induction
on r and s. Finally, (X) is defined on (M) by the condition
O(X)T I U = (X)(T I U) (vertical bar denoting restriction) because as
in the proof of Theorem 2.5 this condition is forced by the requirement
that (X) should be a derivation.

8.2. The first part being obvious, we just verify . *w = (-l)*wo.
We may assume w e Z1(M). If X e Xl(M) and C is the contraction
X ®ow- (X), then 0 o C = C o s implies (O - w)(X) =
(,(X- ))= ((-,)*w)(X).
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B.3. The formula is obvious if T =fe C(M). Next let T =
Y E Zl(M). Iff E Co(M) and q E M, we put F(t, q) = f(g, q) and have

F(t,q) - F(O,q) = t I (aF (st,q) = t h(t,q),f tt,q) -0,)=tW
where h E C-(R X M) and h(O, q) = (Xf)(q). Then

(gt Y), f = (Y(f o gt))(gl p) = (Yf)(g' p) + t(Yh)(t, g 1 p)

so

lim (Y - gt Y),f = (XYf)(p) - (YXf)(p),

so the formula holds for T e Dl(M). But the endomorphism T-,
limo0 t-l(T - g' T) has properties (i), (ii), and (iii) of Exercise B.I;
it coincides with (X) on Co(M) and on 1l(M), hence on all of (M)
by the uniqueness in Exercise B.1.

B.4. For (i) we note that both sidesare derivations of Z(M) commuting
with contractions, preserving type, and having the same effect on D(M)
and on C'(M). The argument of Exercise B.1 shows that they coincide
on (M).

(ii) If r),(M), Y1, ..., Y, e Z)D(M),then by B.1,

(W(X))(Y, -..., Y) = X(W(Y1, ..., Y,))- Uw(Y, ..., [X, Y,1, ..., Y.)

so 0(X) commutes with A.
(iii) Since (X) is a derivation of 9(M) and d is a skew-derivation

(that is, satisfies (iv) in Theorem 2.5), the commutator (X)d - dO(X)
is also a skew-derivation. Since it vanishes on f and df (f E C°(M)), it
vanishes identically (cf. Exercise B. ). For B.l-B.4, cf. Palais [31.

B.5. This is done by the same method as in Exercise B.1.

B.6. For (i) we note that by (iii) in Exercise B.5, i(X) 2 is a derivation.
Since it vanishes on C°(M) and OD(M),it vanishes identically; (ii) follows
by induction; (iii) follows since both sides are skew-derivations which
coincide on Co(M) and on 91(M); (iv) follows because both sides are
derivations which coincide on Co(M) and on Wi(M) .
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C. Affine Connections

C2. If 5 is an affine transformation and we write dl/8xj) =
ti a, 8/8xi, then conditions V1 and Vs imply that each axUis a constant.

If A is the linear transformation (ai), then 0 o A- has differential I,
hence is a translation B, so 40(X) = AX + B. The converse is obvious.

C.4. A direct verification shows that the mapping 8: 9 -

£ w A Vz (o) is a skew-derivation of 2(M) and that it coincides with
d on C=(M). Next let 0 E [(M), X, Y e 1l(M). Then, using (5), §7,

2 (X, Y) 2 ; (w, A Vx,(O))(X, Y)

= X x,(X) V1 ,()(Y)- W,(Y)Vx(o)(X)

= Vx(o)(Y)- V ()(X)

= X o(Y)- o(x(Y)) - Y-o(X)+ O(V,(X)),

which since the torsion is 0 equals

XO(Y) - Y o(X) - ([X, Y]) = 2 dO(X, Y).

Thus = d on %t1(M), hence by the above on all of ¶2(M).

C, 5 Let Z be a vector field on S and X,, Z vector fields on a neigh-
borhood of s in R3 extending X, Y, and Z, respectively. The inner
product (, > on R3 induces a Riemannian structure g on S. If V and V
denote the corresponding affine connections on Rs and S, respectively,
we deduce from (2), §9

<(Z,V().> = g(Z,, Vx(Y)).

But

(F7),= liaim t (Y(t) - Y.),

so we obtain V = V'; in particular V' is an affine connection on S.
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D. Submanifolds

D.1. Let I: G, M x N denote the identity mapping and
ir: M N - M the projection onto the first factor. Let m M and
Z E (G,)m 0 (m))such that dI,,(Z) = 0. Then Z = (d9p)m(X) where
X M,. Thus d7ro dl o dp(X) = 0. But since 7r o I o 0is the identity
mapping, this implies X = 0, so Z = 0 and I is regular.

D.. Immediate from Lemma 3,j,

D3. Consider the figure 8 given by the formula

y(t) = (sin 2t, sin t) (O t 2).

Letf(s) be an increasing function on R such that

lir f(s) = 0, f(O) = i, limf(s) = 27r.

Then the map s -+ y(f(s)) is a bijection of R onto the figure 8. Carrying
the manifold structure of R over, we get a submanifold of R2 which is
closed, yet does not carry the induced topology. Replacing y by 8 given
by 8(t) = (-sin 2t, sint t), we get another manifold structure on the
figure.

D.4. Suppose dim M < dim N. Using the notation of Prop. 3.2,
let W be a compact neighborhood of p in M and WC U. By the counta-
bility assumption, countably many such Wcover M. Thus by Lemma 3.1,
Chapter II, for N, some such W contains an open set in N; contradiction.

G. The Hyperbolic.Plane

1. (i) and (ii) are obvious. (iii) is clear since

x'(t)2 x'(t)2 + y'(t) 2

(1 - x(t)2)2 (1 -- X(t)2 - y(t) 2 )2

where (t) = (x(t), y(t)). For (iv) let z D, u D,, and let z(t) be a
curve with z(O) = z, z'(0)= u. Then

dp.(u) = Idt ((t))O = ( +za) at -a,

and g(d9t(u), d(u)) = g(u, u) now follows by direct computation. Now
(v) follows since p is conformal and maps lines into circles. The first
relation in (vi) is immediate; and writing the expression for d(O, x) as a
cross ratio of the points -1, 0, x, , the expression for d(zL, z 2) follows
since in (iv) preserves cross ratio. For (vii) let be any isometry of D.
Then there exists a as in (iv) such that r7-1leaves the x-axis pointwise
fixed. But then qr-' is either the identity or the complex conjugation
z -..
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CHAPTER II

A. On the Geometry of Lie Groups

A.1. (i) followsfrom exp Ad(x)tX = x exp tXx- 1 = L(x) R(x - 1) exp tX
for Xe g, t ER. For (ii) we note J(x exp tX) =exp(-tX)x - 1, so
dJ.(dL(x)eX) = -dR(x- 1),X. For (iii) we observe for X, Yo g

0 (g exp tXo, h exp sYo) = g exp tX 0h exp sYo

= gh exp t Ad(h-l) X 0 exp sY 0,
so

d0(dL(g)Xo, dL(h)Yo) = dL(gh)(Ad(h-')Xo + Yo).

Putting X = dL(g)Xo, Y = dL(h)Yo, the result follows from (i).
A.2. Suppose y(7t) = V(t) so y(t2 - t1) = e. Let L > 0 be the

smallestnumber such that y(L) = e. Then y(t + L) = y(t) y(L) = y(t).
If T L denotes the translation t -- t + L, we have y o TL = Y, so

Y(O)= dy (-ati) = dy (dt )L A ).

A.3. The curve o satisfies a(t + L) = o(t), so as in A.2, d(0) = e(L).
A.4. Let (p,) be a Cauchy sequence in G/H. Then if d denotes the

distance, d(pn, pm) -- 0 if m, n -- oo. Let B,(o) be a relatively compact
ball of radius > 0 around the origin o = {H} in G/H. Select N such
that d(pN, Pm) < iC for m > N and select g e G such that g PN = o.
Then (g Pm) is a Cauchy sequence inside the compact ball B,(o)-,
hence it, together with the original sequence, is convergent.

A.5. For X E g let .X denote the corresponding left invariant vector
field on G. From Prop. 1.4 we know that (i) is equivalent to V2(Z) = 0
for all Z e g. But by (2), §9 in Chapter I this condition reduces to

g(2, [, 2]) = 0 (X,Z g)

which is clearly equivalent to (ii). Next (iii) follows from (ii) by replacing
X by X + Z. But (iii) is equivalent to Ad(G)-invariance of B so Q is
right invariant. Finally, the map J: x -- x-1 satisfies J = R(g-l) o
J o L(g-l), so dJg = dR(g-1) o dJ o dL(g-l). Since dJe is auto-
matically an isometry, (v) follows.

A.6. Assuming first the existence of V, consider the affine trans-
formation a: g -- exp IYg- 1 exp Y of G which fixes the point exp Y
and maps Yl, the first half of y, onto the second half, y2. Since

a = L(exp Y) o J o L(exp -Y),

we havedaexpt = -I. Let X*(t) Ge p tr (O< t < 1) be the family
of vectors parallel with respect to y such that X*(O) = X. Then maps
X*(s) along Yl into a parallel field along Y2 which must be the field
-X*(t) because da(X*(J)) = --X*(J). Thus the map o J =
L(exp Y) R(exp Y) sends X into X*(l), as stated in part (i). Part (ii)
now followsfrom Theorem 7.1, Chapter I, and part (iii) from Prop. 1.4.
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'2 )

Y,(s)

e

Finally, we prove the existence of V. As remarked before Prop. 1.4,

the equation V(I') = [X, 1 (X, Y E9) defines uniquely a left
invariant affine connection V on G. Since XR(g)= (Ad(g-)X) ~, we get

VXj()(3)) = Ad(g-)[X, Y = (V(?))R'';

this we generalize to any vector fields Z, Z' by writing them in terms of
Xi (I i < n). Next

Vx(J?) = J(V(?)). (1)

Since both sides are right invariant vector fields, it suffices to verify
the equation at e. Now J)Z = -X where X is right invariant, so the
problem is to prove

(rt(?)), = -i[X, yl.
For a basis X, ..., X,, of we write Ad(g-')Y = SYfi(g)X. Since
? = dR(g)Y = dL(g) Ad(g-')Y, it follows that F = iftj, so
using V2 and Lemma 4.2 from Chapter I, 4,

(Vx(?)),= =. (Xf,),X + f/(e)[., X]

Since (Xfi)(e) = {(d/dt)f(exp tX)}to and since

|dt Ad(exp(-tX))(Y)jt = -[X, Y,

the expression on the right reduces to - [X, Y] + [X, Y1, so (1) follows.
As before, (1) generalizes to any vector fields Z, Z'.

The connection V is the O-connectionof Cartan-Schouten [1].

B. The Exponential Mapping

B.1. At the end of §1 it was shown that GL(2, R) has Lie algebra
g(2, R), the Lie algebra of all 2 x 2 real matrices. Since det(e" ) =
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Exercises, Chapter II

el Tr(), Prop. 2.7 shows that i1(2,R) consists of all 2 x 2 real matrices
of trace 0. Writing

X a -1)+ + c ( O) (ca

a direct computation gives for the Killing form

B(X, X) = 8(a2+ bc) = 4 Tr(XX),

whence B(X, Y) = 4 Tr(XY), and semisimplicity follows quickly.
Part (i) is obtained by direct computation. For (ii) we consider the
equation

Case 1:A > O. Then det X < O. In fact det X = 0 implies

so b = c = O, so a = 0, contradicting A 0 1. If det X > O, we deduce
quickly from (i) that b = c = 0, so det X = --a, which is a contra-
diction. Thus det X < 0 and using (i) again we find the only solution

X (log A og)

Case 2: A = -1. For det X > 0 put A = (det X)/ 2. Then using (i)
the equation amounts to

cosJ + (p-' sin p)a = -1, (t- sin1)b = 0,

cos ( -1 sin I)a =-1, (- sin )c = 0.

These equations are satisfied for

/, = (2n+ )r (n EZ), detX = -a2 -- bc = (2n+ 1)2 7r2.

This gives infinitely many choices for X as claimed.

Case 3: A < O,A - -1. If det X = 0, then (i) shows b = c = 0, so
a = 0; impossible. If det X > 0 and we put p = (det X)112, (i) implies

cos IL+ (p- sin /)a = A, (p-1 sin )b = 0,

cos - -1 sin )a = A-,

551

(it-' sina)C= 0.



Since A = A-', we have sinpz O. Thus b = c = 0, so det X = -a,
which is impossible. If det X < 0 and we put Iz = (-det X)1/2, we get
from (i) the equations above with sin and cos replaced by sinh and cosh.
Again b = c = 0, so det X = -a 2 = -- 2; thus a = F, so

cosh s ± sinhp = A, cosh T sinh i =A-l,

contradicting A < 0. Thus there is no solution in this case, as stated.

B.3. Follow the hint.
BA. Considering one-parameter subgroups it is clear that g consists

of the matrices

X(a, , c)= -c O b (a, b, c R).00

Then [X(a, b, c), X(a x, bl, cl)] = X(cbl - cb, ca - cal, 0), so a is
readily seen to be solvable. A direct computation gives

cos c sinc 0 c-l(asinc-b cosc+ b)
exp X(a, b, c) = -sin c cosc 0 c(b sin+acosc--a)

0 0 1
0 0 0 1

Thus exp X(a, b, 2r) is the same point in G for all a, b ER, so exp
is not injective. Similarly, the points in G with y = n2r (n e Z)
a2 + 2 > 0 are not in the iange of exp. This example occurs in
Auslander and MacKenzie [1]; the exponential mapping for a solvable
group is systematically investigated in Dixmier [2].

B.5. Let No be a bounded star-shaped open neighborhood of 0 e g

which exp maps diffeomorphically onto an open neighborhood N, of e
in G. Let N* = exp(½NO).Suppose S is a subgroup of G contained in
N*, and let s - e in S. Then s = exp X (X E N). Let k e Z+ be
such that X, 2X, ... , kX E N0O but (k + )X ¢ IN,. Since No is star-
shaped, (k + I)X E N; but since sk +' E N*, we have sk+l = exp Y,
Y e N o. Since exp is one-to-one on No, (k + 1)X = Y No, which
is a contradiction.
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C. Subgroups and Transformation Groups.

C.1. The proofs given in Lecture26 for SU*(2n) and Sp(n, C)
generalize easily to the other subgroups.

C.2 Let G be a connnected commutative Lie group, ( G*, p) its universal
covering group (see Lecture 17 for definition). Then G* is topologically
isomorphic to a Euclidean group R . Thus G is topologically isomorphic
to a factor group Rn/D where D is a discrete subgroup. By the theorem
below for D this factor group is topologically isomorphic to Rq X Tm
where T is the circle group. Thus by Theorem 2.6, G is analytically
isomorphic to Rq X Tm.

For the last statement let y be the closure of y in H. By the first
statement and Theorem 2.3, y = Rn x Tm for some n, m E Z+. But y
is dense in y, so either n = 1 and m = 0 (y closed) or n = 0 (9 compact).

Theorem. Let V be a vector space over R and D C V a discrete sub-
group. Then there exist linearly independent vectors v, ... , v, in V such
that

D = Zvi .
1

Proof. We may assume that D spans V and shall prove the result by induc-
tion on r = dim V. Consider an indivisible element do · D (i.e., tdo D,
O< t < 1 t = 1). Let U be the line Rdo, W a complementary subspace
and V' = V/U. We have D n U = Zdo because of the choice of do. The
natural mapping 7r : V -4 V' gives a homeomorphism of W onto V'. Let
D' = 7r(D). We claim D' is discrete. Otherwise O would be a limit point
of D' in V' so there would be a sequence (wun)C W, (wn 0) such that
7r(wn) is a sequence in D' converging to O in V'. Let dn C D be such that
7r(dn) = 7r(wu). Then dn - w, U and wn -* O. Select Zn E D n U
such that ds - wn - z, (which belongs to U) lies between O and do. Then
passing to a subsequence we may assume dn - wn - z, converges to a limjtj*
d* E U. Then dn - Zn - d* and since dn,zn E D we have dn = z,, or
sufficiently large n. But z, E U so dn E U for such n and this contradicts
7r(dn) = 7r(wn) # 0.

Thus D' is discrete in V' so by the inductive hypothesis,

r-1
D'= ZvI

for a suitable basis (vi) of V'. Select vi E ) such that 7r(vi) = vi (1 < i <
r- 1). If d E D then 7r(d)= r-lniZviso d --l nivi D n U = Zdo
so the result follows with vr = do ]



C.3. By Theorem 2.6, I is analytic and by Lemma 1.12, dI is injective.
Q.E.D.

C.4. The mapping ~i turns g No into a manifold which we denote
by (g No),. Similarly, 0Yebturns g' · No into a manifold (g' No)v. Thus
we have two manifolds (g. No n g' No)x and (g. No n g' No)v and
must show that the identity map from one to the other is analytic.
Consider the analytic section maps

: (g ' N). - G, %(': (g" ' No)v - G

defined by

a,(gexp(xlXl+ - + Xr) 'po)= g exp(xX,+ ... + xrX,),

ag.(g' exp(ylX + ...- yX,) Po)= g' exp(ylX +- ... + yrX,),

and the analytic map

Jg: fr-l(g' No)-* (g No) x H

given by

J(Z) ((z), [o(=(Z))]-lZ).

Furthermore, let P: (g No)x x H -- (g- No)x denote the projection
on the first component. Then the identity mapping

I: (g Ngg g' No).

can be factored:

(g NO ng' - No-" -NO) (g No) x H P (g No),=.



In fact, if p E g No n g' No, we have

p = g exp(xlXx + ... + x,X,) ·Po = g' exp(yX + ... + Y.X,) Po,

so for some h e H,

P(J(i( p))) = P(Jo(g'exp(yX + ... + yX,)))

= P(r(g'exp(yX1 + ...+ yX,)), h)

= P(r(gexp(x1Xl + ... + X,)), h)
= g exp(x1Xl + ... + x7X)) Po0.

Thus I is composed of analytic maps so is analytic, as desired.

C.S. The subgroup H = G, of G leaving p fixed is closed, so G/H
is a manifold. The map I: GIH -- M given by I(gH) = g p gives
a bijection of G/H onto the orbit G-p. Carrying the differentiable
structure over on G p by means of I, it remains to prove that
I: GI/H- M is everywhere regular. Consider the maps on the diagram

G

G/H , M

where ar(g)= gH, f(g) = g p so = I o ir. If we restrict r to a local
cross section, we can write I = f o 7r- l on a neighborhood of the origin
in GI/H. Thus I is C- near the origin, hence everywhere. Moreover,
the map dpe: g Mv has kernel bI,the Lie algebra of H (cf. proof of
Prop. 4.3). Since d7r,maps g onto (GIH)H with kernel b and since di, =
dlH o d7rT,wee that d is one-to-one. Finally, if T(g) denotes the
diffeomorphism m -+ g m of M, we have I = T(g) o I o.(g-l),
whence

dlig = dT(g), o dis o dT(g-)gH,

so I is everywhere regular.
C.6. By local connectedness each component of G is open. It acquires

an analytic structure from that of Go by left translation. In order to show
the map Ip: (x, y) -- xy-l analytic at a point (xO,Yo)c G x G let Gx and
G2 denote the components of G containing x0 and Yo, respectively. If
To = I Go x G0 and s = I G1 x G2, then

,= L(Xoy-')o I(yo) o g'o L(xo, y;'),

1P13



where I(yo)(x) = yxy (x e G). Now I(yo) is a continuous auto-
morphism of the Lie group Go, hence by Theorem 2.6, analytic; so the
expression for # shows that it is analytic.

C.8. If N with the indicated properties exists we may, by translation,
assume it passes through the origin o = {H} in M. Let L be the subgroup
{geG:g N = N}. If geG maps o into N, then gNrN 0; so
by assumption, gN = N. Thus L = 7r-l(N) where r: G -. G/H is
the natural map. Using Theorem 15.5, Chapter I we see that L can be
given the structure of a submanifold of G with a countable basis and
by the transitivity of G on M, L o = N. By C.7, L has the desired
property. For the converse, define N = L o and use Prop. 4.4 or
Exercise C.5. Clearly,if gN n N 0, then g eL, so gN = N.

For more information on the primitivity notion which goes back to
Lie see e.g. Golubitsky [1].

D. Closed Subgroups

D.1. R2lr is a torus (Exercise C.2), so it sufficesto take a line through
0 in R2 whose image in the torus is dense.

D.2. g has an Int(g)-invariant positive definite quadratic form Q.
The proof of Prop. 6.6 now shows g = + g' ( = center of g, g' = [, g]
compact and semisimple). The groups Int(g) and Int(g') are analytic
subgroups of GL(g) with the same Lie algebra so coincide.

D.3. We have

Xo. (Cl,C,, S) = (C1,ef/ 1 c,, s)

(al, a, r)(cl, c., s)(a1, aS, r)-l

= (a1(l - e2ir) + ce e ISt,a2(1 - e 'h) + Cenit, s)

so t is not an inner automorphism, and Ao.t Int(g). Now let s - 0
and let t, = hs, + hn. Select a sequence (nk) CZ such that hnki
(mod 1) (Kronecker's theorem), and let Tkbe the unique point in [0, 1)
such that t - k Z. Putting sk = Sna, tk = tn,, we have

Ots,.tk = O9afk.?k N.

Note: G is a subgroup of H x H where H = ( ), E C, I I = 1.

E. Invariant Differential Forms

E.1. The affine connection on G.given by VX(I') = *[f, l?]is torsion
free; and by (5), §7, Chapter I, if w is a left invariant 1-form,

v2()(g) = -w(Vx(?)) = -=(()(?))= (().)(?),

Iqq



so Vx(w) = iO(.)(w) for all left invariant forms w. Now use Exercise
C.4 in Chapter I.

E.2. The first relation is proved as (4), §7. For the other we have
gig = I, so (dg)tg+ g'(dg) = 0. Hence (g-L dg) + '(dg)(g)-1 = 0 and
Q + Q = 0.

For U(n) we find similarly for Q = g-1 dg,

d +QA2D= 0, + t" -- 0.

For Sp(n) C U(2n) we recall thatg ESp(n) if and only if

g'g = 2, gJ.'g = J-

(cf. Chapter X). Then the form 12 = g- 1 dg satisfies

dQ+ D AD =0, + J = 0, J + Jt = o.

E.3. A direct computation gives

dx d-xd
g4 dg = O 0 dy

, 0 0

and the result follows.

F. Invariant Measures

F.1. (i) If H is compact, Idet(AdG(H))I and Idet(Adu,(H))j are com-
pact subgroups of the multiplicative groups of the positive reals, hence
identically 1.

(ii) G/H has an invariant measure so Idet AdH(h)l = Idet AdG(h)l,
which by unimodularity of G equals 1.

(iii) Let Go = {geG:ldet AdG(g)l = 1}. Then Go is a normal sub-
group of G containing H. Since 1(G/H) < o, Prop. 1.13 shows that the
group G/Go has finite Haar measure, and hence is compact. Thus the
image det AdG(G)Iis a compact subgroup of the group of positive reals,
and hence consists of 1 alone.

Fj2. The element H = (-_ ) spans the Lie algebra o(2) and
exp Ad(g)tH = g exp tHg- = exp(- tH).

F-3. We have det Ad(exp X) = det(eadx) = eTr(adX) so (i) follows. For
(ii) we know that GI/H has an invariant measure if and only if

exp(Tr(ad, T)) = exp(Tr(adb T)), TE [).

Put T = tXi (r < i < n), t R, and differentiate with respect to t. Then
the desired relations follow.
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F,.4. To each g e M(n) we associate the translation T by the vector
x = g o and the rotation k given by g = Tk. Then kTk - ' = Tk.,, so

g919g2 = T kl TXk 2 = TX,+kl.X2klk2-

Since gk,,,, gk2,X2 = gkik2.,x+k.X2 this shows that the mapping g - gk,x
is an isomorphism. Also

ff(gko. ogk,,x)dk dx = f(ok. xo+ko.X)dk dx

f=.f(gk,) dk dx
since dx is invariant under x -- xO + ko ·x.

·. ,5. By [DS], Chapter II, §7, the entries oij in the matrix =
X-1 dX constitute a basis of the Maurer-Cartan forms (the left invariant
1-forms) on GL(n, R). Writing dX = X91 we obtain from [DS] (Chapter
I, §2, No. 3) for the exterior products

H-dxij = (det X)" H oij,
i.j i,j

so Idet XI - " -ijdxij is indeed a left invariant measure. The same result
would be obtained from the right invariant matrix (dX)X-' so the uni-
modularity follows.

.6. Let the subset G' c G be determined by the condition det X, -
0 and define a measure d on G' by

dp = IdetX I - dxij.
(i,j)~(l, 1)

If dg is a bi-invariant Haar measure on G we have (since G - G' is a
null set)

ff(g) dg= f(g)dg= f J(g)J(g) dt,

where J is a function on G'. Let T be a diagonal matrix with det T = I
and t,, ... , t, its diagonal entries. Under the map X - TX the product

i.nj)o(, dxij is multiplied by t- t - t and Idet XII is multiplied
by t23 ..- t,. Since det T = 1, these factors are equal, so the set G' and
the measure are preserved by the map X - TX. If A is a super-
triangular matrix with diagonal 1, the mapping X - AX is super-
triangular with diagonal I if the elements xij are ordered lexicograph-
ically. Thus -(Ij)(. 1)dxij is unchanged and a simple inspection showst

det((AX) ) = det(X,1 ). It follows that G' and d are invariant under
each map X - UX where U is a supertriangular matrix in G. By trans-
position, G' and d are invariant under the map X -+ XV where V is a
lower triangular matrix in G. The integral formulas above therefore show
that J(UXV) = J(X). Since the products UV form a dense subset of G
([DS], Chapter IX, Exercise A2) is a constant multiple of d. For

,7. A simple computation shows that the measures are invariant
under multiplication by diagonal matrices as well as by unipotent
matrices; hence they are invariant under T(n, R)'

· Note in fact that (AX) 1 = A1 IXn1 if the ij are
ordered by 1ll... X,zln 2n · · ·X2n ... Xnl,...- Xnn.



G. Compact Real Forms and Complete Reducibility

G,. . Since the Killing form of g is nondegenerate, there exists a basis e,, ....
e,, of g such that

B(Z, Z)= -E 2 if Z=- zie (

Let the structural constants CijkE C be determined by

1

[ei, e] = C Cijkek

Then

B(Z, Z)= Tr (ad Z ad Z)= ( CikhCJhk)Zi Zj

so

E CikhCjhk = bij
Ih,k

Also,
B([X,Xj X],Xk) + B(Xj, [Xi, Xk]) = 0

SO

Cijk + Cikj = 0

and
2ihk = n

i, h, k

The space

. = EZRei

is a real form of g if and only if all the cijk are real.
Consider now the set a of all bases (e,, ... , e,) of g such that () holds.

Consider the function f on a given by

(e,, ... , e.)= E ICijkl2
i,j,k

Then we have seen that

Z ECijkj2> cjk = Z C~k= ni,j,k i,j,k i,j,k

and the equality sign holds if and only if all the cijkare real, that is, if and only
if

it = Rei

is a real form. In this case it is a compact real form in view of ) and
Lemma 6.1

Thus Theorem /o3 follows if one can prove: (1)The function f on 5 has
a minimum value; and (11)this minimum value is attained at a point (e ° , ....
e,,°) for which the structural constants are real. Note that (11) is equiv-
alent to (11'): The minimum off is n.
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B.3. (i) Suppose first V is real. Since a compact group of linear trans-
formations of V leaves invariant a positive definite quadratic form, this
part follows (as Prop. 6.6 in Chapter II) by orthogonal complementation.:
If V is complex, we use a positive definite Hermitian form instead.

For (ii) we suppose first V is complex. Then r extends to a representa-
tion of the complexification gc on V. Let u be a compact real form of gC,
U the (compact) simply connected Lie group with Lie algebra u, and,
extend vr to a representation of U on V, also denoted r. If WC V is
7r(g)-invariant, it is also r(gC)-and ir(U)-invariant and a 7r(U)-invariant
complementary subspace will also be r(gc)-invariant. Finally, we consider
the case when V is real using a trick from Freudenthal and de Vries [1],
§35. We view r as a representation of g on the complexification Veof V
and then each member of 7r(g)commutes with the conjugation a of Vc

with respect to V. Let W c V be a r(g)-invariant subspace. Then the
complexification Wc = W + iW is a (g)-invariant subspace of V,:
so by the first case Wc has a r(g)-invariant complement Z' C Vc. Let
Z = (1 + a)(Z' r (1 -a )-l(iW)). Since a(l + a) = a + 1 and 7r(X)a=
ar(X) (X e g), we have Z C V, 7r(g)ZC Z. Also Z r) W = {O}.In fact,
if z e Z n W, there exists a z' e Z' such that (1 - a)z' E iW,

(1 + a)z' = z. Hence z' =(1 - )z' + J(1 + o)z' E WC, so z' = 0
and z = 0. Finally, W + Z = V. In fact, if vE V, then v = w' + z'
(w' e W, z' E Z'). Then w' + z' = v = a = aw' + az', so(1 -a)z' =
(1 -)(--w') eiW, so z' Z' (1--a)-(iW) and (1 + a)z' Z.
Hence v = (1 + a)w' + 1(1 + a)z' -W+ Z.
. (This "theorem of complete reducibility" was first proved by H. Weyl

[1], I, §5 by a similar method;, algebraic proofs were later found by
Casimir and van der Waerden [1] and by Whitehead [4].)
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