SOLUTIONS TO EXERCISES

CHAPTER I

A. Manifolds

A.2. If $p_{1}, p_{2} \in M$ are sufficiently close within a coordinate neighborhood U, there exists a diffeomorphism mapping p_{1} to p_{2} and leaving $M-U$ pointwise fixed. Now consider a curve segment $\gamma(t)(0 \leqslant t \leqslant 1)$ in M joining p to q. Let t^{*} be the supremum of those t for which there exists a diffeomorphism of M mapping p on $\gamma(t)$. The initial remark shows first that $t^{*}>0$, next that $t^{*}=1$, and finally that t^{*} is reached as a maximum.
A.3. The "only if" is obvious and "if" follows from the uniqueness in Prop. 1.1. Now let $\mathscr{F}=C^{\infty}(R)$ where R is given the ordinary differentiable structure. If n is an odd integer, let \mathscr{F}^{n} denote the set of functions $x \rightarrow f\left(x^{n}\right)$ on $\boldsymbol{R}, f \in \mathcal{F}$ being arbitrary. Then \mathfrak{F}^{n} satisfies $\mathfrak{F}_{1}, \mathscr{F}_{2}, \mathscr{F}_{3}$. Since $\mathfrak{F}^{n} \neq \mathfrak{F}^{m}$ for $n \neq m$, the corresponding δ^{n} are all different.
A.4. (i) If $d \Phi \cdot X=Y$ and $f \in C^{\infty}(N)$, then $X(f \circ \Phi)=$ (Yf) $\circ \Phi \in \mathfrak{F}_{0}$. On the other hand, suppose $X \mathfrak{F}_{0} \subset \mathfrak{F}_{0}$. If $F \in \mathcal{F}_{0}$, then $F=g \circ \Phi$ where $g \in C^{\infty}(N)$ is unique. If $f \in C^{\infty}(N)$, then $X(f \circ \Phi)=$ $g \circ \Phi\left(g \in C^{\infty}(N)\right.$ unique $)$, and $f \rightarrow g$ is a derivation, giving Y.
(ii) If $d \Phi \cdot X=Y$, then $Y_{\Phi(p)}=d \Phi_{p}\left(X_{p}\right)$, so necessity follows. Suppose $d \Phi_{p}\left(M_{p}\right)=N_{\Phi(p)}$ for each $p \in M$. Define for $r \in N, Y$, $=$ $d \Phi_{p}\left(X_{p}\right)$ if $r=\Phi(p)$. In order to show that $Y: r \rightarrow Y_{r}$ is differentiable we use , coordinates around p and around $r=\Phi(p)$ such that Φ has the expression $\left(x_{1}, \ldots, x_{m}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$. Writing

$$
X=\sum_{i}^{m} a_{i}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{i}},
$$

we have for q sufficiently near p

$$
d \Phi_{\sigma}\left(X_{q}\right)=\sum_{i}^{n} a_{i}\left(x_{1}(q), \ldots, x_{m}(q)\right)\left(\frac{\partial}{\partial x_{i}}\right)_{\Phi(q)},
$$

so condition (1) implies that for $1 \leqslant i \leqslant n, a_{i}$ is constant in the last $m-n$ arguments. Hence

$$
Y=\sum_{1}^{n} a_{i}\left(x_{1}, \ldots, x_{n}, x_{n+1}(p), \ldots, x_{m}(p)\right) \frac{\partial}{\partial x_{i}}
$$

(iii) $f \in C^{\infty}(N)$ if and only if $f \circ \psi \in C^{\infty}(R)$. If $f(x)=x^{3}$, then $f \circ \psi(x)=x, \quad\left(f^{\prime} \circ \psi\right)(x)=3 x^{\ddagger}$, so $f \in C^{\infty}(N), f^{\prime} \notin C^{\infty}(N)$. Hence $f \circ \Phi \in \mathscr{F}_{0}$, but $X(f \circ \Phi) \notin \mathcal{F}_{0}$; so by (i), X is not projectable.
A.5. Obvious.
A.7. We can assume $M=R^{m}, p=0$, and that $X_{0}=\left(\partial / \partial t_{1}\right)_{0}$ in terms of the standard coordinate system $\left\{t_{1}, \ldots, t_{m}\right\}$ on \boldsymbol{R}^{m}. Consider the integral curve $\varphi_{1}\left(0, c_{2}, \ldots, c_{m}\right)$ of X through $\left(0, c_{2}, \ldots, c_{m}\right)$. Then the mapping $\psi:\left(c_{1}, \ldots, c_{m}\right) \rightarrow \varphi_{c_{1}}\left(0, c_{2}, \ldots, c_{m}\right)$ is C^{∞} for small c_{i}, $\psi\left(0, c_{2}, \ldots, c_{m}\right)=\left(0, c_{2}, \ldots, c_{m}\right)$, so

$$
d \psi_{0}\left(\frac{\partial}{\partial c_{i}}\right)=\left(\frac{\partial}{\partial t_{i}}\right)_{0} \quad(i>1)
$$

Also

$$
d \psi_{0}\left(\frac{\partial}{\partial c_{1}}\right)_{0}=\left(\frac{\partial \varphi_{c_{1}}}{\partial c_{1}}\right)(0)=X_{0}=\left(\frac{\partial}{\partial t_{1}}\right)_{0} .
$$

Thus ψ can be inverted near 0 , so $\left\{c_{1}, \ldots, c_{m}\right\}$ is a local coordinate system. Finally, if $c=\left(c_{1}, \ldots, c_{m}\right)$,

$$
\begin{aligned}
\left(\frac{\partial}{\partial c_{1}}\right)_{\psi(c)} f & =\left(\frac{\partial(f \circ \psi)}{\partial c_{1}}\right)_{c} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(\varphi_{c_{1}+h}\left(0, c_{2}, \ldots, c_{m}\right)\right)-f\left(\varphi_{c_{1}}\left(0, c_{2}, \ldots, c_{m}\right)\right]\right. \\
& =(X f)(\psi(c))
\end{aligned}
$$

so $X=\partial / \partial c_{1}$.
A.8. Let $f \in C^{\infty}(M)$. Writing \sim below when in an equality we omit terms of higher order in s or t, we have

$$
\begin{aligned}
& f\left(\psi_{-t}\left(\varphi_{-s}\left(\psi_{i}\left(\varphi_{s}(0)\right)\right)\right)\right)-f(0) \\
& =f\left(\psi_{-t}\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(0)\right)\right)\right)\right)-f\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(0)\right)\right)\right) \\
& +f\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)-f\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) \\
& +f\left(\psi_{1}\left(\varphi_{s}(o)\right)\right)-f\left(\varphi_{s}(o)\right)+f\left(\varphi_{s}(o)\right)-f(o) \\
& \sim-t(Y f)\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right)+\frac{1}{2} t^{2}\left(Y^{2} f\right)\left(\varphi_{-s}\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)\right) \\
& -s(X f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)+\frac{1}{2} s^{2}\left(X^{2} f\right)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) \\
& +t(Y f)\left(\psi_{s}\left(\varphi_{s}(0)\right)\right)-\frac{1}{2} t^{2}\left(Y^{2} f\right)\left(\psi_{t}\left(\varphi_{s}(0)\right)\right) \\
& +s(X f)\left(\varphi_{s}(o)\right)-\frac{1}{2} s^{2}\left(X^{2} f\right)\left(\varphi_{s}(o)\right) \\
& \sim s t(X Y f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right)-s t(Y X f)\left(\psi_{t}\left(\varphi_{s}(o)\right)\right) .
\end{aligned}
$$

This last expression is obtained by pairing off the 1st and 5th term, the 3rd and 7th, the 2nd and 6th, and the 4th and 8th. Hence

$$
f\left(\gamma\left(t^{2}\right)\right)-f(o)=t^{2}([X, Y] f)(o)+O\left(t^{3}\right)
$$

A similar proof is given in Faber [1].

B. The Lie Derivative and the Interior Product

B.1. If the desired extension of $\theta(X)$ exists and if $C: \mathfrak{D}_{1}^{1}(M) \rightarrow C^{\infty}(M)$ is the contraction, then (i), (ii), (iii) imply

$$
(\theta(X) \omega)(Y)=X(\omega(Y))-\omega([X, Y]), \quad X, Y \in \mathfrak{D}^{1}(M)
$$

Thus we define $\theta(X)$ on $\mathfrak{D}_{1}(M)$ by this relation and note that $(\theta(X) \omega)(f Y)=f(\theta(X)(\omega))(Y)\left(f \in C^{\infty}(M)\right)$, so $\theta(X) \mathfrak{D}_{1}(M) \subset \mathfrak{D}_{1}(M)$. If U is a coordinate neighborhood with coordinates $\left\{x_{1}, \ldots, x_{m}\right\}, \theta(X)$ induces an endomorphism of $C^{\infty}(U), \mathfrak{D}^{1}(U)$, and $\mathfrak{D}_{1}(U)$. Putting $X_{i}=$ $\partial / \partial x_{i}, \omega_{j}=d x_{j}$, each $T \in \mathfrak{D}_{s}^{\gamma}(U)$ can be written

$$
T=\sum T_{(i),(j)} X_{i_{1}} \otimes \ldots \otimes X_{i_{r}} \otimes \omega_{i_{1}} \otimes \ldots \otimes \omega_{i_{1}}
$$

with unique coefficients $T_{(i),(j)} \in C^{\infty}(U)$. Now $\theta(X)$ is uniquely extended to $D(U)$ satisfying (i) and (ii). Property (iii) is then verified by induction on r and s. Finally, $\theta(X)$ is defined on $D(M)$ by the condition $\theta(X) T \mid U=\theta(X)(T \mid U)$ (vertical bar denoting restriction) because as in the proof of Theorem 2.5 this condition is forced by the requirement that $\theta(X)$ should be a derivation.
B.2. The first part being obvious, we just verify $\Phi \cdot \omega=\left(\Phi^{-1}\right)^{*} \omega$. We may assume $\omega \in \mathfrak{D}_{1}(M)$. If $X \in \mathfrak{D}^{1}(M)$ and C is the contraction $X \otimes \omega \rightarrow \omega(X)$, then $\Phi \circ C=C \circ \Phi \quad$ implies $\quad(\Phi \cdot \omega)(X)=$ $\Phi\left(\omega\left(X^{\oplus-1}\right)\right)=\left(\left(\Phi^{-1}\right)^{*} \omega\right)(X)$.
B.3. The formula is obvious if $T=f \in C^{\infty}(M)$. Next let $T=$ $Y \in \mathfrak{D}^{1}(M)$. If $f \in C^{\infty}(M)$ and $q \in M$, we put $F(t, q)=f\left(g_{t} \cdot q\right)$ and have

$$
F(t, q)-F(0, q)=t \int_{0}^{1}\left(\frac{\partial F}{\partial t}\right)(s t, q) d s=t h(t, q),
$$

where $h \in C^{\infty}(R \times M)$ and $h(0, q)=(X f)(q)$. Then

$$
\left(g_{t} \cdot Y\right)_{p} f=\left(Y\left(f \circ g_{t}\right)\right)\left(g_{t}^{-1} \cdot p\right)=(Y f)\left(g_{t}^{-1} \cdot p\right)+t(Y h)\left(t, g_{t}^{-1} \cdot p\right)
$$

so

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-g_{t} \cdot Y\right)_{p} f=(X Y f)(p)-(Y X f)(p)
$$

so the formula holds for $T \in \mathfrak{D}^{1}(M)$. But the endomorphism $T \rightarrow$ $\lim _{t \rightarrow 0} t^{-1}\left(T-g_{t} \cdot T\right)$ has properties (i), (ii), and (iii) of Exercise B.1; it coincides with $\theta(X)$ on $C^{\infty}(M)$ and on $\mathfrak{D}^{1}(M)$, hence on all of $D(M)$ by the uniqueness in Exercise B.1.
B.4. For (i) we note that both sides are derivations of $\mathfrak{D}(M)$ commuting with contractions, preserving type, and having the same effect on $\mathbb{D}^{1}(M)$ and on $C^{\infty}(M)$. The argument of Exercise B.l shows that they coincide on $\mathfrak{D}(M)$.
(ii) If $\omega \in \mathcal{D}_{r}(M), Y_{1}, \ldots, Y_{r} \in \mathfrak{D}^{1}(M)$, then by B.1,

$$
(\theta(X) \omega)\left(Y_{1}, \ldots, Y_{r}\right)=X\left(\omega\left(Y_{1}, \ldots, Y_{r}\right)\right)-\sum_{i} \omega\left(Y_{1}, \ldots,\left[X, Y_{i}\right], \ldots, Y_{r}\right)
$$

so $\theta(X)$ commutes with A.
(iii) Since $\theta(X)$ is a derivation of $\mathscr{X}(M)$ and d is a skew-derivation (that is, satisfies (iv) in Theorem 2.5), the commutator $\theta(X) d-d \theta(X)$ is also a skew-derivation. Since it vanishes on f and $d f\left(f \in C^{\infty}(M)\right.$), it vanishes identically (cf. Exercise B.1). For B.1-B.4, cf. Palais [3].
B.5. This is done by the same method as in Exercise B.1.
B.6. For (i) we note that by (iii) in Exercise B.5, $i(X)^{2}$ is a derivation. Since it vanishes on $C^{\infty}(M)$ and $D_{1}(M)$, it vanishes identically; (ii) follows by induction; (iii) follows since both sides are skew-derivations which coincide on $C^{\infty}(M)$ and on $\mathfrak{\Re}_{1}(M)$; (iv) follows because both sides are derivations which coincide on $C^{\infty}(M)$ and on $\mathfrak{M}_{1}(M)$.

C. Affine Connections

C.2. If Φ is an affine transformation and we write $d \Phi\left(\partial / \partial x_{j}\right)=$ $\Sigma_{i} a_{i j} \partial / \partial x_{i}$, then conditions ∇_{1} and ∇_{2} imply that each $a_{i j}$ is a constant. If A is the linear transformation $\left(a_{i j}\right)$, then $\Phi \circ A^{-1}$ has differential I, hence is a translation B, so $\Phi(X)=A X+B$. The converse is obvious.
C.4. A direct verification shows that the mapping $\delta: \theta \rightarrow$ $\Sigma_{2}^{m} \omega_{i} \wedge \nabla_{x_{i}}(\theta)$ is a skew-derivation of $\mathscr{H}(M)$ and that it coincides with d on $C^{\infty}(M)$. Next let $\theta \in \mathfrak{Q}_{1}(M), X, Y \in \mathfrak{D}^{1}(M)$. Then, using (5), §7,

$$
\begin{aligned}
2 \delta \theta(X, Y) & =2 \sum_{i}\left(\omega_{i} \wedge \nabla_{x_{i}}(\theta)\right)(X, Y) \\
& =\sum_{i} \omega_{i}(X) \nabla_{x_{i}}(\theta)(Y)-\omega_{i}(Y) \nabla_{x_{i}}(\theta)(X) \\
& =\nabla_{x}(\theta)(Y)-\nabla_{y}(\theta)(X) \\
& =X \cdot \theta(Y)-\theta\left(\nabla_{x}(Y)\right)-Y \cdot \theta(X)+\theta\left(\nabla_{Y}(X)\right),
\end{aligned}
$$

which since the torsion is 0 equals

$$
X \theta(Y)-Y \cdot \theta(X)-\theta([X, Y])=2 d \theta(X, Y)
$$

Thus $\delta=d$ on $\Upsilon_{1}(M)$, hence by the above on all of $\mathscr{\Re}(M)$.
C. 5. Let Z be a vector field on S and \tilde{X}, \tilde{Y}, Z vector fields on a neighborhood of s in R^{3} extending X, Y, and Z, respectively. The inner product \langle,$\rangle on R^{3}$ induces a Riemannian structure g on S. If $\tilde{\nabla}$ and ∇. denote the corresponding affine connections on R^{3} and S, respectively, we deduce from (2), §9

$$
\left\langle\tilde{Z}_{s}, \widetilde{\nabla}_{x}(\tilde{Y})_{s}\right\rangle=g\left(Z_{s}, \nabla_{x}(Y)_{s}\right)
$$

But

$$
\widetilde{\nabla}_{X}(\tilde{Y})_{s}=\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{\gamma(t)}-Y_{z}\right),
$$

so we obtain $\nabla=\nabla^{\prime}$; in particular ∇^{\prime} is an affine connection on S.

D. Submanifolds

D.1. Let $I: G_{\phi} \rightarrow M \times N$ denote the identity mapping and $\pi: M \times N \rightarrow M$ the projection onto the first factor. Let $m \in M$ and $Z \in\left(G_{\Phi}\right)_{(m, \Phi(m))}$ such that $d I_{m}(Z)=0$. Then $Z=(d \varphi)_{m}(X)$ where $X \in M_{m}$. Thus $d \pi \circ d I \circ d \varphi(X)=0$. But since $\pi \circ I \circ \varphi$ is the identity mapping, this implies $X=0$, so $Z=0$ and I is regular.
D.2. Immediate from Lemma 3.4.
D.3. Consider the figure 8 given by the formula

$$
\gamma(t)=(\sin 2 t, \sin t) \quad(0 \leqslant t \leqslant 2 \pi) .
$$

Let $f(s)$ be an increasing function on \boldsymbol{R} such that

$$
\lim _{s \rightarrow-\infty} f(s)=0, \quad f(0)=\pi, \quad \lim _{s \rightarrow+\infty} f(s)=2 \pi
$$

Then the map $s \rightarrow \gamma(f(s))$ is a bijection of \boldsymbol{R} onto the figure 8. Carrying the manifold structure of R over, we get a submanifold of R^{2} which is closed, yet does not carry the induced topology. Replacing γ by δ given by $\delta(t)=(-\sin 2 t$, $\sin t t$, we get another manifold structure on the figure.
D.4. Suppose $\operatorname{dim} M<\operatorname{dim} N$. Using the notation of Prop. 3.2, let W be a compact neighborhood of p in M and $W \subset U$. By the countability assumption, countably many such W cover M. Thus by Lemma 3.1, Chapter II, for N, some such W contains an open set in N; contradiction.

G. The Hyperbolic Plane

1. (i) and (ii) are obvious. (iii) is clear since

$$
\frac{x^{\prime}(t)^{2}}{\left(1-x(t)^{2}\right)^{2}} \leqslant \frac{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}{\left(1-x(t)^{2}-y(t)^{2}\right)^{2}}
$$

where $\gamma(t)=(x(t), y(t))$. For (iv) let $z \in D, u \in D_{z}$, and let $z(t)$ be a curve with $z(0)=z, z^{\prime}(0)=u$. Then

$$
d \varphi_{z}(u)=\left\{\frac{d}{d t} \varphi(z(t))\right\}_{i=0}=\frac{z^{\prime}(0)}{(\bar{b} z+\bar{a})^{2}} \quad \text { at } \varphi \cdot z,
$$

and $g(d \varphi(u), d \varphi(u))=g(u, u)$ now follows by direct computation. Now (v) follows since φ is conformal and maps lines into circles. The first relation in (vi) is immediate; and writing the expression for $d(0, x)$ as a cross ratio of the points $-1,0, x, 1$, the expression for $d\left(z_{1}, z_{2}\right)$ follows since φ in (iv) preserves cross ratio. For (vii) let τ be any isometry of D. Then there exists a φ as in (iv) such that $\varphi \tau^{-1}$ leaves the x-axis pointwise fixed. But then $\varphi \tau^{-1}$ is either the identity or the complex conjugation $z \rightarrow \bar{z}$.

CHAPTER II

A. On the Geometry of Lie Groups

A.1. (i) follows from $\exp \operatorname{Ad}(x) t X=x \exp t X x^{-1}=L(x) R\left(x^{-1}\right) \exp t X$ for $X \in g, t \in R$. For (ii) we note $J(x \exp t X)=\exp (-t X) x^{-1}$, so $d J_{x}\left(d L(x)_{e} X\right)=-d R\left(x^{-1}\right)_{e} X$. For (iii) we observe for $X_{0}, Y_{0} \in g$

$$
\begin{aligned}
\Phi\left(g \exp t X_{0}, h \exp s Y_{0}\right) & =g \exp t X_{0} h \exp s Y_{0} \\
& =g h \exp t \operatorname{Ad}\left(h^{-1}\right) X_{0} \exp s Y_{0}
\end{aligned}
$$

so

$$
d \Phi\left(d L(g) X_{0}, d L(h) Y_{0}\right)=d L(g h)\left(\operatorname{Ad}\left(h^{-1}\right) X_{0}+Y_{0}\right) .
$$

Putting $X=d L(g) X_{0}, Y=d L(h) Y_{0}$, the result follows from (i).
A.2. Suppose $\gamma\left(t_{1}\right)=\gamma\left(t_{2}\right)$ so $\gamma\left(t_{2}-t_{1}\right)=e$. Let $L>0$ be the smallest number such that $\gamma(L)=e$. Then $\gamma(t+L)=\gamma(t) \gamma(L)=\gamma(t)$. If τ_{L} denotes the translation $t \rightarrow t+L$, we have $\gamma \circ \tau_{L}=\gamma$, so

$$
\dot{\gamma}(0)=d \gamma\left(\frac{d}{d t}\right)_{0}=d \gamma\left(\frac{d}{d t}\right)_{L}=\dot{\gamma}(L) .
$$

A.3. The curve σ satisfies $\sigma(t+L)=\sigma(t)$, so as in A.2, $\dot{\sigma}(0)=\dot{\sigma}(L)$.
A.4. Let $\left(p_{n}\right)$ be a Cauchy sequence in G / H. Then if d denotes the distance, $d\left(p_{n}, p_{m}\right) \rightarrow 0$ if $m, n \rightarrow \infty$. Let $B_{s}(o)$ be a relatively compact ball of radius $\epsilon>0$ around the origin $o=\{H\}$ in G / H. Select N such that $d\left(p_{N}, p_{m}\right)<\frac{1}{2} \in$ for $m \geqslant N$ and select $g \in G$ such that $g \cdot p_{N}=0$. Then $\left(g \cdot p_{m}\right)$ is a Cauchy sequence inside the compact ball $B_{\mathrm{f}}(0)^{-}$, hence it, together with the original sequence, is convergent.
A.5. For $X \in \mathrm{~g}$ let \tilde{X} denote the corresponding left invariant vector field on G. From Prop. 1.4 we know that (i) is equivalent to $\nabla_{z}(Z)=0$ for all $Z \in \mathrm{~g}$. But by (2), $\S 9$ in Chapter I this condition reduces to

$$
g(Z,[\mathscr{X}, Z])=0 \quad(X, Z \in \mathfrak{g})
$$

which is clearly equivalent to (ii). Next (iii) follows from (ii) by replacing X by $X+Z$. But (iii) is equivalent to $\operatorname{Ad}(G)$-invariance of B so Q is right invariant. Finally, the map $J: x \rightarrow x^{-1}$ satisfies $J=R\left(g^{-1}\right) \circ$ $J \circ L\left(g^{-1}\right)$, so $d J_{\sigma}=d R\left(g^{-1}\right)_{e} \circ d J_{e} \circ d L\left(g^{-1}\right)_{g}$. Since $d J_{e}$ is automatically an isometry, (v) follows.
A.6. Assuming first the existence of ∇, consider the affine transformation $\sigma: g \rightarrow \exp \frac{1}{2} Y g^{-1} \exp \frac{1}{2} Y$ of G which fixes the point $\exp \frac{1}{2} Y$ and maps γ_{1}, the first half of γ, onto the second half, γ_{2}. Since

$$
\sigma=L\left(\exp \frac{1}{2} Y\right) \circ J \circ L\left(\exp -\frac{1}{2} Y\right)
$$

we have $d \sigma_{\exp \nmid y}=-I$. Let $X^{*}(t) \in G_{\exp t Y}(0 \leqslant t \leqslant 1)$ be the family of vectors parallel with respect to γ such that $X^{*}(0)=X$. Then σ maps $X^{*}(s)$ along γ_{1} into a parallel field along γ_{2} which must be the field $-X^{*}(t)$ because $d \sigma\left(X^{*}\left(\frac{1}{2}\right)\right)=-X^{*}\left(\frac{1}{2}\right)$. Thus the map $\sigma \circ J=$ $L\left(\exp \frac{1}{2} Y\right) R\left(\exp \frac{1}{2} Y\right)$ sends X into $X^{*}(1)$, as stated in part (i). Part (ii) now follows from Theorem 7.1, Chapter I, and part (iii) from Prop. 1.4.

Finally, we prove the existence of ∇. As remarked before Prop. 1.4, the equation $\nabla_{x}(\tilde{Y})=\frac{1}{2}[\tilde{X}, \tilde{Y}](X, Y \in \mathrm{~g})$ defines uniquely a left invariant affine connection ∇ on G. Since $\bar{X}^{R(g)}=\left(\operatorname{Ad}\left(g^{-1}\right) X\right)^{\sim}$, we get

$$
\left.\nabla_{X^{R(\rho)}\left(Y^{R(\theta)}\right)}\right)=\frac{1}{\partial}\left\{\operatorname{Ad}\left(g^{-1}\right)[X, Y]\right\}^{\sim}=\left(\nabla_{X}(\hat{Y})\right)^{R(\theta)} ;
$$

this we generalize to any vector fields Z, Z^{\prime} by writing them in terms of $\tilde{X}_{i}(1 \leqslant i \leqslant n)$. Next

$$
\begin{equation*}
\nabla_{J X}(J \tilde{Y})=J\left(\nabla_{X}(\tilde{Y})\right) . \tag{1}
\end{equation*}
$$

Since both sides are right invariant vector fields, it suffices to verify the equation at e. Now $J \tilde{X}=-\bar{X}$ where \bar{X} is right invariant, so the problem is to prove

$$
\left(\nabla_{\boldsymbol{f}}(\bar{P})\right)_{\epsilon}=-\frac{1}{2}[X, Y] .
$$

For a basis X_{1}, \ldots, X_{n} of g we write $\operatorname{Ad}\left(g^{-1}\right) Y=\Sigma_{i} f_{i}(g) X_{i}$. Since $\bar{Y}_{g}=d R(g) Y=d L(g) \operatorname{Ad}\left(g^{-1}\right) Y$, it follows that $\bar{Y}=\Sigma_{i} f_{i} \tilde{X}_{i}$, so using ∇_{2} and Lemma 4.2 from Chapter I, §4,

$$
\left(\nabla_{x}(\bar{Y})\right)_{e}=\left(\nabla_{X}(\bar{Y})\right)_{e}=\sum_{i}\left(X f_{i}\right)_{e} X_{i}+\frac{1}{2} \sum_{i} f_{i}(e)\left[X, X_{i}\right]_{e}
$$

Since $\left(X f_{i}\right)(e)=\left\{(d / d t) f_{i}(\exp t X)\right\}_{t=0}$ and since

$$
\left\{\frac{d}{d t} \operatorname{Ad}(\exp (-t X))(Y)\right\}_{t=0}=-[X, Y]
$$

the expression on the right reduces to $-[X, Y]+\frac{1}{2}[X, Y]$, so (1) follows. As before, (1) generalizes to any vector fields Z, Z^{\prime}.

The connection ∇ is the 0 -connection of Cartan-Schouten [1].

B. The Exponential Mapping

B.1. At the end of $\S 1$ it was shown that $G L(2, R)$ has Lie algebra $\mathrm{gl}(2, R)$, the Lie algebra of all 2×2 real matrices. Since $\operatorname{det}\left(e^{i x}\right)=$
$e^{i \operatorname{Tr}(X)}$, Prop. 2.7 shows that $\mathrm{s}(2, R)$ consists of all 2×2 real matrices of trace 0 . Writing

$$
X=a\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right)
$$

a direct computation gives for the Killing form

$$
B(X, X)=8\left(a^{2}+b c\right)=4 \operatorname{Tr}(X X)
$$

whence $B(X, Y)=4 \operatorname{Tr}(X Y)$, and semisimplicity follows quickly. Part (i) is obtained by direct computation. For (ii) we consider the equation

$$
e^{x}=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) \quad(\lambda \in R, \lambda \neq 1)
$$

Case 1: $\lambda>0$. Then $\operatorname{det} X<0$. In fact $\operatorname{det} X=0$ implies

$$
I+X=\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)
$$

so $b=c=0$, so $a=0$, contradicting $\lambda \neq 1$. If det $X>0$, we deduce quickly from (i) that $b=c=0$, so det $X=-a^{2}$, which is a contradiction. Thus det $X<0$ and using (i) again we find the only solution

$$
X=\left(\begin{array}{ll}
\log \lambda & 0 \\
0 & -\log \lambda
\end{array}\right)
$$

Case 2: $\lambda=-1$. For $\operatorname{det} X>0$ put $\mu=(\operatorname{det} X)^{1 / 2}$. Then using (i) the equation amounts to

$$
\begin{array}{ll}
\cos \mu+\left(\mu^{-1} \sin \mu\right) a=-1, & \left(\mu^{-1} \sin \mu\right) b=0 \\
\cos \mu-\left(\mu^{-1} \sin \mu\right) a=-1, & \left(\mu^{-1} \sin \mu\right) c=0
\end{array}
$$

These equations are satisfied for

$$
\mu=(2 n+1) \pi \quad(n \in Z), \quad \operatorname{det} X=-a^{2}-b c=(2 n+1)^{2} \pi^{2}
$$

This gives infinitely many choices for X as claimed.
Case 3: $\lambda<0, \lambda \neq-1$. If $\operatorname{det} X=0$, then (i) shows $b=c=0$, so $a=0$; impossible. If det $X>0$ and we put $\mu=(\operatorname{det} X)^{1 / 2}$, (i) implies

$$
\begin{array}{ll}
\cos \mu+\left(\mu^{-1} \sin \mu\right) a=\lambda, & \left(\mu^{-1} \sin \mu\right) b=0 \\
\cos \mu-\left(\mu^{-1} \sin \mu\right) a=\lambda^{-1}, & \left(\mu^{-1} \sin \mu\right) c=0 .
\end{array}
$$

Since $\lambda \neq \lambda^{-1}$, we have $\sin \mu \neq 0$. Thus $b=c=0$, so $\operatorname{det} X=-a^{2}$, which is impossible. If $\operatorname{det} X<0$ and we put $\mu=(-\operatorname{det} X)^{1 / 2}$, we get from (i) the equations above with sin and cos replaced by \sinh and cosh. Again $b=c=0$, so $\operatorname{det} X=-a^{2}=-\mu^{2}$; thus $a= \pm \mu$, so

$$
\cosh \mu \pm \sinh \mu=\lambda, \quad \cosh \mu \mp \sinh \mu=\lambda^{-1}
$$

contradicting $\lambda<0$. Thus there is no solution in this case, as stated.
B.3. Follow the hint.
B.A. Considering one-parameter subgroups it is clear that g consists of the matrices

$$
X(a, b, c)=\left(\begin{array}{rrrr}
0 & c & 0 & a \\
-c & 0 & 0 & b \\
0 & 0 & 0 & c \\
0 & 0 & 0 & 0
\end{array}\right) \quad(a, b, c \in R)
$$

Then $\left[X(a, b, c), X\left(a_{1}, b_{1}, c_{1}\right)\right]=X\left(c b_{1}-c_{1} b, c_{1} a-c a_{1}, 0\right)$, so g is readily seen to be solvable. A direct computation gives

$$
\exp X(a, b, c)=\left(\begin{array}{cccc}
\cos c & \sin c & 0 & c^{-1}(a \sin c-b \cos c+b) \\
-\sin c & \cos c & 0 & c^{-1}(b \sin c+a \cos c-a) \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Thus $\exp X(a, b, 2 \pi)$ is the same point in G for all $a, b \in R$, so \exp is not injective. Similarly, the points in G with $\gamma=n 2 \pi(n \in Z)$ $\alpha^{2}+\beta^{2}>0$ are not in the range of exp. This example occurs in Auslander and MacKenzie [1]; the exponential mapping for a solvable group is systematically investigated in Dixmier [2].
B.5. Let N_{0} be a bounded star-shaped open neighborhood of $0 \in g$ which exp maps diffeomorphically onto an open neighborhood N_{e} of e in G. Let $N^{*}=\exp \left(\frac{1}{2} N_{0}\right)$. Suppose S is a subgroup of G contained in N^{*}, and let $s \neq e$ in S. Then $s=\exp X\left(X \in \frac{1}{2} N_{0}\right)$. Let $k \in Z^{+}$be such that $X, 2 X, \ldots, k X \in \frac{1}{2} N_{0}$ but $(k+1) X \notin \frac{1}{2} N_{0}$. Since N_{0} is starshaped, $(k+1) X \in N_{0}$; but since $s^{k+1} \in N^{*}$, we have $s^{k+1}=\exp Y$, $Y \in \frac{1}{2} N_{0}$. Since \exp is one-to-one on $N_{0},(k+1) X=Y \in \frac{1}{2} N_{0}$, which is a contradiction.

C. Subgroups and Transformation Groups

C.1. The proofs given in Lecture 26 for $S U^{*}(2 n)$ and $S p(n, C)$ generalize easily to the other subgroups.
C. 2 Let G be a connnected commutative Lie group, (G^{*}, p) its universal covering group (see Lecture 17 for definition). Then G^{*} is topologically isomorphic to a Euclidean group R^{n}. Thus G is topologically isomorphic to a factor group $\mathrm{Rn}_{\mathrm{n}} \mathrm{D}$ where D is a discrete subgroup. By the theorem below for D this factor group is topologically isomorphic to RqX Tm where T is the circle group. Thus by Theorem $2.6, G$ is analytically isomorphic to Rg X Tm.

For the last statement let $\bar{\gamma}$ be the closure of γ in H. By the first statement and Theorem 2.3, $\bar{\gamma}=R^{n} \times T^{m}$ for some $n, m \in Z^{+}$. But γ is dense in $\bar{\gamma}$, so either $n=1$ and $m=0(\gamma$ closed $)$ or $n=0(\bar{\gamma}$ compact $)$.

Theorem. Let V be a vector space over \mathbf{R} and $D \subset V$ a discrete subgroup. Then there exist linearly independent vectors v_{1}, \ldots, v_{r} in V such that

$$
D=\sum_{i}^{r} \mathbf{Z} v_{i} .
$$

Proof. We may assume that D spans V and shall prove the result by induction on $r=\operatorname{dim} V$. Consider an indivisible element $d_{0} \in D$ (i.e., $t d_{0} \in D$, $0<t \leq 1 \Rightarrow t=1$). Let U be the line $\mathbf{R} d_{0}, W$ a complementary subspace and $V^{\prime}=V / U$. We have $D \cap U=\mathbf{Z} d_{0}$ because of the choice of d_{0}. The natural mapping $\pi: V \rightarrow V^{\prime}$ gives a homeomorphism of W onto V^{\prime}. Let $D^{\prime}=\pi(D)$. We claim D^{\prime} is discrete. Otherwise O would be a limit point of D^{\prime} in V^{\prime} so there would be a sequence $\left(w_{n}\right) \subset W,\left(w_{n} \neq 0\right)$ such that $\pi\left(w_{n}\right)$ is a sequence in D^{\prime} converging to O in V^{\prime}. Let $d_{n} \in D$ be such that $\pi\left(d_{n}\right)=\pi\left(w_{n}\right)$. Then $d_{n}-w_{n} \in U$ and $w_{n} \rightarrow O$. Select $z_{n} \in D \cap U$ such that $d_{n}-w_{n}-z_{n}$ (which belongs to U) lies between O and d_{0}. Then passing to a subsequence we may assume $d_{n}-w_{n}-z_{n}$ converges to a limit k $d^{*} \in U$. Then $d_{n}-z_{n} \rightarrow d^{*}$ and since $d_{n}, z_{n} \in D$ we have $d_{n}=z_{n}^{+}$for sufficiently large n. But $z_{n} \in U$ so $d_{n} \in U$ for such n and this contradicts $\pi\left(d_{n}\right)=\pi\left(w_{n}\right) \neq 0$.

Thus D^{\prime} is discrete in V^{\prime} so by the inductive hypothesis,

$$
D^{\prime}=\sum_{1}^{r-1} \mathbf{Z} v_{i}^{\prime}
$$

for a suitable basis $\left(v_{i}^{\prime}\right)$ of V^{\prime}. Select $v_{i} \in D$ such that $\pi\left(v_{i}\right)=v_{i}^{\prime}(1 \leq i \leq$ $r-1$). If $d \in D$ then $\pi(d)=\sum_{1}^{r-1} n_{i} v_{i}^{\prime}$ so $d-\sum_{1}^{r-1} n_{i} v_{i} \in D \cap U=\mathbf{Z} d_{0}$ so the result follows with $v_{r}=d_{0}$.
C.3. By Theorem $2.6, I$ is analytic and by Lemma $1.12, d I$ is injective. Q.E.D.
C.4. The mapping ψ_{g} turns $g \cdot N_{0}$ into a manifold which we denote by $\left(g \cdot N_{0}\right)_{x}$. Similarly, $\psi_{g^{\prime}}$ turns $g^{\prime} \cdot N_{0}$ into a manifold $\left(g^{\prime} \cdot N_{0}\right)_{y}$. Thus we have two manifolds $\left(g \cdot N_{0} \cap g^{\prime} \cdot N_{0}\right)_{x}$ and $\left(g \cdot N_{0} \cap g^{\prime} \cdot N_{0}\right)_{y}$ and must show that the identity map from one to the other is analytic. Consider the analytic section maps

$$
\sigma_{g}:\left(g \cdot N_{0}\right)_{x} \rightarrow G, \quad \sigma_{\theta^{\prime}}:\left(g^{\prime} \cdot N_{0}\right)_{\nu} \rightarrow G
$$

defined by

$$
\begin{aligned}
\sigma_{g}\left(g \exp \left(x_{1} X_{1}+\ldots+x_{r} X_{r}\right) \cdot p_{0}\right) & =g \exp \left(x_{1} X_{1}+\ldots+x_{r} X_{r}\right) \\
\sigma_{g} \cdot\left(g^{\prime} \exp \left(y_{1} X_{1}+\ldots+y_{r} X_{r}\right) \cdot p_{0}\right) & =g^{\prime} \exp \left(y_{1} X_{1}+\ldots+y_{r} X_{r}\right)
\end{aligned}
$$

and the analytic map

$$
J_{g}: \pi^{-1}\left(g \cdot N_{0}\right) \rightarrow\left(g \cdot N_{0}\right)_{x} \times H
$$

given by

$$
J_{g}(z)=\left(\pi(z),\left[\sigma_{g}(\pi(z))\right]^{-1} z\right)
$$

Furthermore, let $P:\left(g \cdot N_{0}\right)_{x} \times H \rightarrow\left(g \cdot N_{0}\right)_{x}$ denote the projection on the first component. Then the identity mapping

$$
I:\left(g \cdot N_{0} \cap g^{\prime} \cdot N_{0}\right)_{v} \rightarrow\left(g \cdot N_{0} \cap g^{\prime} \cdot N_{0}\right)_{x}
$$

can be factored:

$$
\left(g \cdot N_{0} \cap g^{\prime} \cdot N_{0}\right)_{y} \xrightarrow{\sigma_{g^{\prime}}} \pi^{-1}\left(g \cdot N_{0}\right) \xrightarrow{J_{g}}\left(g \cdot N_{0}\right)_{x} \times H \xrightarrow{P}\left(g \cdot N_{0}\right)_{x} .
$$

In fact, if $p \in g \cdot N_{0} \cap g^{\prime} \cdot N_{0}$, we have

$$
p=g \exp \left(x_{1} X_{1}+\ldots+x_{r} X_{r}\right) \cdot p_{0}=g^{\prime} \exp \left(y_{1} X_{1}+\ldots+y_{r} X_{r}\right) \cdot p_{0}
$$

so for some $h \in H$,

$$
\begin{aligned}
P\left(J_{\rho}\left(\sigma_{g^{\prime}}(p)\right)\right) & =P\left(J_{\rho}\left(g^{\prime} \exp \left(y_{1} X_{1}+\ldots+y_{r} X_{r}\right)\right)\right) \\
& =P\left(\pi\left(g^{\prime} \exp \left(y_{1} X_{1}+\ldots+y_{r} X_{r}\right)\right), h\right) \\
& =P\left(\pi\left(g \exp \left(x_{1} X_{1}+\ldots+x_{\tau} X_{\tau}\right)\right), h\right) \\
& \left.=g \exp \left(x_{1} X_{1}+\ldots+x_{r} X_{r}\right)\right) \cdot p_{0} .
\end{aligned}
$$

Thus I is composed of analytic maps so is analytic, as desired.
C.5. The subgroup $H=G_{p}$ of G leaving p fixed is closed, so G / H is a manifold. The map $I: G / H \rightarrow M$ given by $I(g H)=g \cdot p$ gives a bijection of G / H onto the orbit $G \cdot p$. Carrying the differentiable structure over on $G \cdot p$ by means of I, it remains to prove that $I: G / H \rightarrow M$ is everywhere regular. Consider the maps on the diagram

where $\pi(g)=g H, \beta(g)=g \cdot p$ so $\beta=I \circ \pi$. If we restrict π to a local cross section, we can write $I=\beta \circ \pi^{-1}$ on a neighborhood of the origin in G / H. Thus I is C^{∞} near the origin, hence everywhere. Moreover, the map $d \beta_{e}: g \rightarrow M_{p}$ has kernel \mathfrak{b}, the Lie algebra of H (cf. proof of Prop. 4.3). Since $d \pi_{e}$ maps g onto $(G / H)_{H}$ with kernel \mathfrak{b} and since $d \beta_{e}=$ $d I_{H} \circ d \pi_{e}$, wee that $d I_{H}$ is one-to-one. Finally, if $T(g)$ denotes the diffeomorphism $m \rightarrow g \cdot m$ of M, we have $I=T(g) \circ I \circ \tau\left(g^{-1}\right)$, whence

$$
d I_{g H}=d T(g)_{p} \circ d I_{H} \circ d \tau\left(g^{-1}\right)_{g H},
$$

so I is everywhere regular.
C.6. By local connectedness each component of G is open. It acquires an analytic structure from that of G_{0} by left translation. In order to show the $\operatorname{map} \varphi:(x, y) \rightarrow x y^{-1}$ analytic at a point $\left(x_{0}, y_{0}\right) \in G \times G$ let G_{1} and G_{2} denote the components of G containing x_{0} and y_{0}, respectively. If $\varphi_{0}=\varphi \mid G_{0} \times G_{0}$ and $\psi=\varphi \mid G_{1} \times G_{2}$, then

$$
\psi=L\left(x_{0} y_{0}^{-1}\right) \circ I\left(y_{0}\right) \circ \varphi_{0} \circ L\left(x_{0}^{-1}, y_{0}^{-1}\right),
$$

where $I\left(y_{0}\right)(x)=y_{0} x y_{0}^{-1}\left(x \in G_{0}\right)$. Now $I\left(y_{0}\right)$ is a continuous automorphism of the Lie group G_{0}, hence by Theorem 2.6, analytic; so the expression for ψ shows that it is analytic.
C.8. If N with the indicated properties exists we may, by translation, assume it passes through the origin $o=\{H\}$ in M. Let L be the subgroup $\{g \in G: g \cdot N=N\}$. If $g \in G$ maps o into N, then $g N \cap N \neq \emptyset$; so by assumption, $g N=N$. Thus $L=\pi^{-1}(N)$ where $\pi: G \rightarrow G / H$ is the natural map. Using Theorem 15.5, Chapter I we see that L can be given the structure of a submanifold of G with a countable basis and by the transitivity of G on $M, L \cdot o=N$. By C.7, L has the desired property. For the converse, define $N=L \cdot o$ and use Prop. 4.4 or Exercise C.5. Clearly, if $g N \cap N \neq \emptyset$, then $g \in L$, so $g N=N$.

For more information on the primitivity notion which goes back to Lie see e.g. Golubitsky [1].

D. Closed Subgroups

D.1. R^{2} / Γ is a torus (Exercise C.2), so it suffices to take a line through 0 in R^{2} whose image in the torus is dense.
D.2. g has an $\operatorname{Int}(\mathrm{g})$-invariant positive definite quadratic form Q. The proof of Prop. 6.6 now shows $g=3+g^{\prime}\left(3=\right.$ center of $g, g^{\prime}=[g, g]$ compact and semisimple). The groups $\operatorname{Int}(\mathrm{g})$ and $\operatorname{Int}\left(\mathrm{g}^{\prime}\right)$ are analytic subgroups of $\boldsymbol{G L}(\mathrm{g})$ with the same Lie algebra so coincide.
D.3. We have

$$
\begin{gathered}
\alpha_{0,3}\left(c_{1}, c_{2}, s\right)=\left(c_{1}, e^{2 \pi i / 3} c_{2}, s\right) \\
\left(a_{1}, a_{2}, r\right)\left(c_{1}, c_{2}, s\right)\left(a_{1}, a_{2}, r\right)^{-1} \\
=\left(a_{1}\left(1-e^{2 \pi i t}\right)+c_{1} e^{2 \pi i r}, a_{2}\left(1-e^{2 \pi i \lambda s}\right)+c_{2} e^{2 \pi i h r}, s\right)
\end{gathered}
$$

so $\alpha_{0 . \frac{1}{b}}$ is not an inner automorphism, and $A_{0 . \frac{1}{2}} \notin \operatorname{Int}(\mathrm{~g})$. Now let $s_{n} \rightarrow 0$ and let $t_{n}=h s_{n}+h n$. Select a sequence $\left(n_{k}\right) \subset Z$ such that $h n_{k} \rightarrow \frac{1}{3}$ (mod 1) (Kronecker's theorem), and let τ_{k} be the unique point in $[0,1$) such that $t_{n_{k}}-\tau_{k} \in Z$. Putting $s_{k}=s_{n_{k}}, t_{k}=t_{n_{k}}$, we have

$$
\alpha_{s_{k}, t_{k}}=\alpha_{s_{k}, \tau_{k}} \rightarrow \alpha_{0, \xi}
$$

Note: G is a subgroup of $H \times H$ where $H=\left(\begin{array}{cc}1 & 0 \\ c & \alpha\end{array}\right), c \in C,|\alpha|=1$.

E. Invariant Differential Forms

E.1. The affine connection on G given by $\nabla_{X}(\tilde{Y})=\frac{1}{2}[\tilde{X}, \tilde{Y}]$ is torsion free; and by (5), §7, Chapter I, if ω is a left invariant 1 -form,

$$
\nabla \mathfrak{x}(\omega)(\tilde{Y})=-\omega(\nabla x(\tilde{Y}))=-\frac{1}{2} \omega(\theta(\tilde{X})(\tilde{Y}))=\frac{1}{2}(\theta(\tilde{X}) \omega)(\tilde{Y}),
$$

so $\nabla_{X}(\omega)=\frac{1}{2} \theta(\tilde{X})(\omega)$ for all left invariant forms ω. Now use Exercise C. 4 in Chapter I.
E.2. The first relation is proved as (4), §7. For the other we have $g^{\prime} g=I$, so $(d g)^{i} g+g^{\prime}(d g)=0$. Hence $\left(g^{-1} d g\right)+!(d g)\left({ }^{\prime} g\right)^{-1}=0$ and $\Omega+1 \Omega=0$.

For $U(n)$ we find similarly for $\Omega=\boldsymbol{g}^{-1} d g$,

$$
d \Omega+\Omega \wedge \Omega=0, \quad \Omega+t \bar{\Omega}=0
$$

For $S_{p(n)} \subset U(2 n)$ we recall that $g \in S p(n)$ if and only if

$$
g^{t} \bar{g}=I_{2 n}, \quad g J_{n}{ }^{t} g=J_{n}
$$

(cf. Chapter X). Then the form $\Omega=g^{-1} d g$ satisfies

$$
d \Omega+\Omega \wedge \Omega=0, \quad \Omega+{ }^{2} \bar{\Omega}=0, \quad \Omega J_{n}+J_{n}{ }^{2} \Omega=0
$$

E.3. A direct computation gives

$$
g^{-1} d g=\left(\begin{array}{ccc}
0 & d x & d z-x d y \\
0 & 0 & d y \\
0 & 0 & 0
\end{array}\right)
$$

and the result follows.

F. Invariant Measures

F.1. (i) If H is compact, $\left|\operatorname{det}\left(\operatorname{Ad}_{G}(H)\right)\right|$ and $\left|\operatorname{det}\left(\operatorname{Ad}_{H}(H)\right)\right|$ are compact subgroups of the multiplicative groups of the positive reals, hence identically 1 .
(ii) G / H has an invariant measure so $\left|\operatorname{det} \mathrm{Ad}_{H}(h)\right|=\left|\operatorname{det} \mathrm{Ad}_{G}(h)\right|$, which by unimodularity of G equals 1 .
(iii) Let $G_{0}=\left\{g \in G:\left|\operatorname{det} \operatorname{Ad}_{G}(g)\right|=1\right\}$. Then G_{0} is a normal subgroup of G containing H. Since $\mu(G / H)<\infty$, Prop. 1.13 shows that the group G / G_{0} has finite Haar measure, and hence is compact. Thus the image $\left|\operatorname{det} \mathrm{Ad}_{G}(G)\right|$ is a compact subgroup of the group of positive reals, and hence consists of 1 alone.
F.2. The element $H=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$ spans the Lie algebra $\mathfrak{p}(2)$ and $\exp \operatorname{Ad}(g) t H=g \exp t \mathrm{Hg}^{-1}=\exp (-t H)$.
F. 3. We have $\operatorname{det} \operatorname{Ad}(\exp X)=\operatorname{det}\left(e^{\operatorname{ad} X}\right)=e^{\operatorname{Tr}(\operatorname{dd} X)}$, so (i) follows. For (ii) we know that G / H has an invariant measure if and only if

$$
\exp \left(\operatorname{Tr}\left(\operatorname{ad}_{\mathfrak{g}} T\right)\right)=\exp \left(\operatorname{Tr}\left(\operatorname{ad}_{\mathfrak{h}} T\right)\right), T \in \mathfrak{h} .
$$

Put $T=t X_{i}(r<i \leq n), t \in R$, and differentiate with respect to t. Then the desired relations follow.
F.4. To each $g \in M(n)$ we associate the translation T_{x} by the vector $x=g \cdot o$ and the rotation k given by $g=T_{x} k$. Then $k T_{x} k^{-1}=T_{k \cdot x}$, so

$$
g_{1} g_{2}=T_{x_{1}} k_{1} T_{x_{2}} k_{2}=T_{x_{1}+k_{1} \cdot x_{2}} k_{1} k_{2}
$$

Since $g_{k_{1}, x_{1}} \cdot g_{k_{2}, x_{2}}=g_{k_{1} k_{2}, x_{1}+k_{1} \cdot x_{2}}$ this shows that the mapping $g \rightarrow g_{k, x}$ is an isomorphism. Also

$$
\begin{aligned}
\int f\left(g_{k_{0}, x_{0}} g_{k, x}\right) d k d x & =\int f\left(g_{k_{0} k, x_{0}+k_{0} \cdot x}\right) d k d x \\
& =\int f\left(g_{k, x}\right) d k d x
\end{aligned}
$$

since $d x$ is invariant under $x \rightarrow x_{0}+k_{0} \cdot x$.
F.5. By [DS], Chapter II, §7, the entries $\omega_{i j}$ in the matrix $\Omega=$ $X^{-1} d X$ constitute a basis of the Maurer-Cartan forms (the left invariant 1 -forms) on $G L(n, R)$. Writing $d X=X \Omega$ we obtain from [DS] (Chapter I, §2, No. 3) for the exterior products

$$
\prod_{i, j} d x_{i j}=(\operatorname{det} X)^{n} \prod_{i, j} \omega_{i j}
$$

so \mid det $\left.X\right|^{-n} \prod_{i, j} d x_{i j}$ is indeed a left invariant measure. The same result would be obtained from the right invariant matrix $(d X) X^{-1}$ so the unimodularity follows.
F.6. Let the subset $G^{\prime} \subset G$ be determined by the condition det $X_{11} \neq$ 0 and define a measure $d \mu$ on G^{\prime} by

$$
d \mu=\left|\operatorname{det} X_{11}\right|^{-1} \prod_{(i, j) \neq(1,1)} d x_{i j}
$$

If $d g$ is a bi-invariant Haar measure on G we have (since $G-G^{\prime}$ is a null set)

$$
\int_{G} f(g) d g=\int_{C^{\prime}} f(g) d g=\int_{G^{\prime}} f(g) J(g) d \mu
$$

where J is a function on G^{\prime}. Let T be a diagonal matrix with $\operatorname{det} T=1$ and t_{1}, \ldots, t_{n} its diagonal entries. Under the map $X \rightarrow T X$ the product $\prod_{(i, j) \neq(1,1)} d x_{i j}$ is multiplied by $t_{1}^{n-1} t_{2}^{n} \cdots t_{n}^{n}$ and \mid det $X_{11} \mid$ is multiplied by $t_{2} t_{3} \cdots t_{n}$. Since det $T=1$, these factors are equal, so the set G^{\prime} and the measure μ are preserved by the map $X \rightarrow T X$. If A is a supertriangular matrix with diagonal 1 , the mapping $X \rightarrow A X$ is supertriangular with diagonal 1 if the elements $x_{i j}$ are ordered lexicographically. Thus $\prod_{(i, j) \neq(1.1)} d x_{i j}$ is unchanged and a simple inspection shows \dagger $\operatorname{det}\left((A X)_{11}\right)=\operatorname{det}\left(X_{11}\right)$. It follows that G^{\prime} and $d \mu$ are invariant under each map $X \rightarrow U X$ where U is a supertriangular matrix in G. By transposition, G^{\prime} and $d \mu$ are invariant under the map $X \rightarrow X V$ where V is a lower triangular matrix in G. The integral formulas above therefore show that $J(U X V) \equiv J(X)$. Since the products $U V$ form a dense subset of G ([DS], Chapter IX, Exercise A2) μ is a constant multiple of $d g$. For
F.7. A simple computation shows that the measures are invariant under multiplication by diagonal matrices as well as by unipotent matrices; hence they are invariant under $\boldsymbol{T}(n, \boldsymbol{R})$.
${ }^{\dagger}$ Note in fact that $(A X)_{11}=A_{11} X_{11}$ if the $x_{i j}$ are
ordered by $x_{11}, \ldots, x_{1 n}, x_{2 n}, \ldots x_{2 n}, \ldots x_{n 1}, \ldots x_{n n}$.

G. Compact Real Fornes and Complete Reducibility

G.1. Since the Killing form of g is nondegenerate, there exists a basis e_{1}, \ldots, e_{n} of g such that

$$
\begin{equation*}
B(Z, Z)=-\sum_{1}^{n} z_{i}^{2} \quad \text { if } \quad Z=\sum_{1}^{n} z_{i} e_{i} \tag{1}
\end{equation*}
$$

Let the structural constants $c_{i j k} \in \boldsymbol{C}$ be determined by

$$
\left[e_{i}, e_{j}\right]=\sum_{1}^{n} c_{i j k} e_{k}
$$

Then

$$
B(Z, Z)=\operatorname{Tr}(\operatorname{ad} Z \operatorname{ad} Z)=\sum_{i, j}\left(\sum_{h, k} c_{i k h} c_{j h k}\right) z_{i} z_{j}
$$

so

$$
\sum_{h, k} c_{i k h} c_{j h k}=-\delta_{i j}
$$

Also,

$$
B\left(\left[X_{i}, X_{j}\right], X_{k}\right)+B\left(X_{j},\left[X_{i}, X_{k}\right]\right)=0
$$

so

$$
c_{i j k}+c_{i k j}=0
$$

and

$$
\sum_{i, h, k} c_{i h k}^{2}=n
$$

The space

$$
\mathfrak{u}=\sum_{1}^{n} R e_{i}
$$

is a real form of \mathfrak{g} if and only if all the $c_{i j k}$ are real.
Consider now the set \mathfrak{F} of all bases $\left(e_{1}, \ldots, e_{n}\right)$ of \mathfrak{g} such that (\downarrow) holds. Consider the function f on \mathfrak{F} given by

$$
f\left(e_{1}, \ldots, e_{n}\right)=\sum_{i, j, k}\left|c_{i j k}\right|^{2}
$$

Then we have seen that

$$
\sum_{i, j, k}\left|c_{i j k}\right|^{2} \geqslant\left|\sum_{i, j, k} c_{i j k}^{2}\right|=\sum_{i, j, k} c_{i j k}^{2}=n
$$

and the equality sign holds if and only if all the $c_{i j k}$ are real, that is, if and only if

$$
\mathfrak{u}=\sum_{1}^{n} R e_{i}
$$

is a real form. In this case it is a compact real form in view of (4) and Lemma 6.1

Thus Theorem 6.3 follows if one can prove: (l) The function f on \mathfrak{F} has a minimum value; and (II) this minimum value is attained at a point ($e_{1}{ }^{0}, \ldots$, $\left.e_{n}{ }^{0}\right) \in \mathscr{F}$ for which the structural constants are real. Note that (II) is equivalent to (11^{\prime}): The minimum of f is n.
B.3. (i) Suppose first V is real. Since a compact group of linear transformations of V leaves invariant a positive definite quadratic form, this part follows (as Prop. 6.6 in Chapter II) by orthogonal complementation: If V is complex, we use a positive definite Hermitian form instead.

For (ii) we suppose first V is complex. Then π extends to a representation of the complexification g^{c} on V. Let \mathfrak{u} be a compact real form of \mathfrak{g}^{c}, U the (compact) simply connected Lie group with Lie algebra \mathfrak{u}, and extend π to a representation of U on V, also denoted π. If $W \subset V$ is $\pi(\mathrm{g})$-invariant, it is also $\pi\left(\mathrm{g}^{c}\right)$ - and $\pi(U)$-invariant and a $\pi(U)$-invariant complementary subspace will also be $\pi\left(g^{C}\right)$-invariant. Finally, wee consider the case when V is real using a trick from Freudenthal and de Vries [1], §35. We view π as a representation of g on the complexification V^{c} of V and then each member of $\pi(\mathrm{g})$ commutes with the conjugation σ of $V^{\text {c }}$ with respect to V. Let $W \subset V$ be a $\pi(\mathfrak{g})$-invariant subspace. Then the complexification $W^{c}=W+i W$ is a $\pi(\mathrm{g})$-invariant subspace of V^{0}, so by the first case W^{c} has a $\pi(\mathrm{g})$-invariant complement $Z^{\prime} \subset V^{c}$. Let $Z=(1+\sigma)\left(Z^{\prime} \cap(1-\sigma)^{-1}(i W)\right)$. Since $\sigma(1+\sigma)=\sigma+1$ and $\pi(X) \sigma=$ $\sigma \pi(X)(X \in \mathfrak{g})$, we have $Z \subset V, \pi(\mathfrak{g}) Z \subset Z$. Also $Z \cap W=\{0\}$. In fact, if $z \in Z \cap W$, there exists a $z^{\prime} \in Z^{\prime}$ such that $(1-\sigma) z^{\prime} \in i W$,
$(1+\sigma) z^{\prime}=z$. Hence $z^{\prime}=\frac{1}{2}(1-\sigma) z^{\prime}+\frac{1}{2}(1+\sigma) z^{\prime} \in W^{c}$, so $z^{\prime}=0$ and $z=0$. Finally, $W+Z=V$. In fact, if $v \in V$, then $v=w^{\prime}+z^{\prime}$ ($w^{\prime} \in W^{c}, z^{\prime} \in Z^{\prime}$). Then $w^{\prime}+z^{\prime}=v=\sigma v=\sigma w^{\prime}+\sigma z^{\prime}$, so $(1-\sigma) z^{\prime}=$ $(1-\sigma)\left(-w^{\prime}\right) \in i W$, so $z^{\prime} \in Z^{\prime} \cap(1-\sigma)^{-1}(i W)$ and $(1+\sigma) z^{\prime} \in Z$. Hence $v=\frac{1}{2}(1+\sigma) w^{\prime}+\frac{1}{2}(1+\sigma) z^{\prime} \in W+Z$.
(This "theorem of complete reducibility" was first proved by H. Weyl [1], I, $\$ 5$ by a similar method; algebraic proofs were later found by Casimir and van der Waerden [1] and by Whitehead [4].)

