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14 Ordinary and supersingular elliptic curves 

Let E/k be an elliptic curve over a field of positive characteristic p. In Lecture 7 we proved 
that for any nonzero integer n, the multiplication-by-n map [n] is separable if and only if n 
is not divisible by p. This implies that the separable degree of the multiplication-by-p map 
cannot be p2 = deg[p], it must be either p or 1, meaning that its kernel E[p] is either cyclic 
of order p or trivial. The terms ordinary and supersingular distinguish these two cases: 

E is ordinary ⇐⇒ E[p] ' Z/pZ. 
E is supersingular ⇐⇒ E[p] = {0}. 

We now want to explore this distinction further, and relate it to our classification of 
endomorphism algebras. In the previous lecture we showed that End0(E) := End(E) ⊗Z Q 
has dimension 1, 2, or 4 as a Q-vector space, depending on whether it is isomorphic to Q, 
an imaginary quadratic field, or a quaternion algebra. In this lecture we will show that 
End0(E) is a quaternion algebra if and only if E is supersingular. 

Before we begin, let us recall some facts about isogenies proved in Lectures 6 and 7. We 
assume throughout that we are working in a field k of prime characteristic p. 

1. Any isogeny α can be decomposed as α = αsep ◦ πn, where αsep is separable and π is 
p p p).the purely inseparable p-power Frobenius map (x : y : z) 7→ (x : y : z

2. If α = αsep ◦ πn then deg α := deg αsep, degi α := pn, and deg α = (deg α)(degi α).s s 

3. We have # ker α = deg α.s 

4. We have deg(α ◦ β) = (deg α)(deg β), and similarly for deg and degi.s 

5. A sum of inseparable isogenies is inseparable. 

6. A sum of separable isogenies need not be separable. 

7. The sum of a separable and an inseparable isogeny is separable. 

8. A composition of separable (inseparable) isogenies is separable (inseparable). 

9. The multiplication-by-n is inseparable if and only if p|n. 

Before analyzing the situation over finite fields, let us first note that the property of 
being ordinary or supersingular is an isogeny invariant. 

Theorem 14.1. Let φ : E1 → E2 be an isogeny. Then E1 is supersingular if and only if E2 

is supersingular (and E1 is ordinary if and only if E2 is ordinary). 

Proof. Let p1 ∈ End(E1) and p2 ∈ End(E2) denote the multiplication-by-p maps on E1 

and E2, respectively. We have p2 ◦ φ = φ + · · · + φ = φ ◦ p1, thus 

p2 ◦ φ = φ ◦ p1 

deg (p2 ◦ φ) = deg (φ ◦ p1)s s

deg (p2) deg (φ) = deg (φ) deg (p1)s s s s

deg (p2) = deg (p1).s s

We now note that Ei is supersingular if and only if deg (pi) = 1; the theorem follows. s
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14.1 Ordinary/supersingular elliptic curves over finite fields 

Theorem 14.2. An elliptic curve E/Fq is supersingular if and only if tr πE ≡ 0 mod p. 

nProof. Let q = p . If E is supersingular then E[p] = ker[p] = ker ππ̂ is trivial; therefore 
ker π̂ is trivial and π̂ is inseparable. The isogeny π̂n = πcn = π̂E is also inseparable, as is 
πE = πn, so tr πE = πE + π̂E is a sum of inseparable endomorphisms, hence inseparable, 
therefore tr πE ≡ 0 mod p, since tr π ∈ Z ⊆ End(E) is an integer ([n] is inseparable i˙ p|n). 

Conversely, if tr πE ≡ 0 mod p, then tr πE is inseparable, as is π̂E = tr πE − πE . This 
means that π̂n and therefore π̂ is inseparable, so ker π̂ must be trivial, since deg π̂ = p is 
prime. The kernel of π is also trivial, so E[p] = ker π̂π is trivial and E is supersingular. 

Corollary 14.3. Let E/Fp be an elliptic curve over a field of prime order p > 3. Then E 
is supersingular if and only if tr πE = 0, equivalently, if and only if #E(Fp) = p + 1. 

√ √Proof. By Hasse’s theorem, | tr πE | ≤ 2 p, and 2 p < p for p > 3. 

Warning 14.4. Corollary 14.3 is not true when p is 2 or 3. 

This should convince you that supersingular curves over Fp are rare: there are ≈ 4 
√ 
p

possible values for tr πE , and all but one correspond to ordinary curves. 

Theorem 14.5. If E/Fq is an ordinary elliptic curve then End0(E) = Q(πE ) is an imagi-
nary quadratic field. 

n 2Proof. Let q = p . If πE ∈ Z ⊆ End(E) then q = deg πE = deg[r] = r for some r ∈ Z, 
which implies that n is even and r = ±pn/2 . But then tr πE = 2r ≡ 0 mod p and E is 
supersingular, by Theorem 14.2, a contradiction. So πE 6∈ Z, and, πE 6∈ Q, because πE is 
an algebraic integer. 
Claim: For all m ≥ 1 we have πm = aπE + b, for some a 6≡ 0 mod p and b ≡ 0 mod p.E 
Proof of claim: We proceed by induction on m. The base case holds with a = 1 and b = 0. 
For the inductive step: 

πm+1 = πEπ
m = πE (aπE + b) (inductive hypothesis)E E 

= bπE + a((tr πE )πE − q) (since π2 
E − (tr πE )πE + q = 0) 

= (a(tr πE ) + b)πE − aq 

= cπE + d, 

where c = a(tr πE ) + b 6≡ 0 mod p, since a tr πE 6≡ 0 mod p and b ≡ 0 mod p, and we have 
d = −aq ≡ 0 mod p, as desired. 

The claim implies πE
m ∈/ Q for m ≥ 1, since πm = aπE + b with a 6= 0, and πE ∈/ Q.E 

Now consider any α ∈ End0(E). We can write α as α = sφ with s ∈ Q and φ ∈ End(E). 
The endomorphism φ is defined over Fq, hence over Fqm for some m. Writing φ as φ(x, y) = 
(r1(x), r2(x)y), we have 

m m m m m mq q q q(φπm ), r2(x )y ) = (r1(x)
q , r2(x)

q y E φ)(x, y),E )(x, y) = (r1(x ) = (πm 

thus φ, and therefore α, commutes with πm It then follows from Lemma 13.17 proved in E . 
the previous lecture that α ∈ Q(πm) ⊆ Q(πE ). Therefore End0(E) = Q(πE ) as claimed. E 
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Remark 14.6. In the proof above we used the fact that every endomorphism commutes 
with some power of the Frobenius endomorphism πE to prove that when E is ordinary 
End0(E) is an imaginary quadratic field. When E is supersingular it is still true that every 
endomorphism commutes with a power of πE , but this power of πE may lie in Z. 

In the case that E/Fq is ordinary, the proof above not only shows that End0(E) is an 
imaginary quadratic field, it tells us exactly which quadratic field End0(E) = Q(πE ) is. 

√ 
Corollary 14.7. If E/Fq is an ordinary elliptic curve then End0(E) ' Q( D), where 
D = t2 − 4q < 0, with t = tr πE . 

Proof. By Theorem 14.5, End0(E) = Q(πE ), and D = t2 − 4q is the discriminant of the √ 
quadratic equation x2 − tx + q = 0 satisfied by πE , so Q(πE) = Q( D). We must have 
D < 0, since Q(πE ) is imaginary quadratic. 

If E/Fq is an ordinary elliptic curve, then its Frobenius endomorphism πE is not an 
integer, thus the subring Z[πE ] of End(E) generated by πE is a lattice of rank 2. It follows 
that Z[πE ] is an order in the imaginary quadratic field K = End0(E), and is therefore 
contained in the maximal order OK , the ring of integers of K. The endomorphism ring 
End(E) need not equal Z[π], but the fact that it contains Z[π] and is contained in OK 

constrains End(E) to a finite set of possibilities. Recall from Theorem 13.27 that every 
order O in K is uniquely characterized by its conductor, which is equal to [O : OK ]. 

√ 
Theorem 14.8. Let E/Fq be an ordinary elliptic curve with End0(E) ' K = Q( D) as 
above. Then 

Z[πE ] ⊆ End(E) ⊆ OK , 

and the conductor of End(E) divides [OK : Z[πE ]]. 

Proof. Immediate from the discussion above. 

Remark 14.9. Theorem 14.8 implies that once we know t = tr π (which we can compute √ 
in polynomial time using Schoof’s algorithm), which determines End0(E) ' K = Q( D) 
and the orders OK and Z[πE ], we can constrain End(E) to a finite set of possibilities 
distinguished by the conductor f = [OK : End(E)]. No polynomial-time algorithm is known 
for computing the integer f , but there is a Las Vegas algorithm that has a heuristically 
subexponential expected running time [1]. This makes it feasible to compute f even when q 
is of cryptographic size (say q ≈ 2256). 

Remark 14.10. It will often be convenient to identify End0(E) with K and End(E) with an 
order O in K. But we should remember that we are actually speaking of isomorphisms. In 
the case of an imaginary quadratic field, there are two distinct choices for this isomorphism. 
This choice can be made canonically, see [3, Thm. II.1.1], however this is not particularly 
relevant to us, as we are going to be working in finite fields where we cannot distinguish the 
square roots of D in any case. Thus we accept the fact that we are making an arbitrary choice √ 
when we fix an isomorphism of End0(E) with K by identifying πE with, say, (t + D)/2√ 
(as opposed to (t − D)/2). 

Before leaving the topic of of ordinary and supersingular curves, we want to prove a 
remarkable fact about supersingular curves: they are all defined over F 2 . To prove this we p

first introduce the j-invariant, which will play a critical role in the lectures to come. 
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14.2 The j-invariant of an elliptic curve 

As usual, we shall assume we are working over a field k whose characteristic is not 2 or 3, 
2 3so that we can put our elliptic curves E/k in short Weierstrass form y = x + Ax + B. 

2 3Definition 14.11. The j-invariant of the elliptic curve E : y = x + Ax + B is 

4A3 

j(E) = j(A, B) = 1728 . 
4A3 + 27B2 

Note that the denominator of j(E) is nonzero, since it is the discriminant of the cubic 
3x + Ax + B, which has no repeated roots. There are two special cases worth noting: if 

A = 0 then j(A, B) = 0, and if B = 0 then j(A, B) = 1728 (note that A and B cannot both 
be zero). The j-invariant can also be defined for elliptic curves in general Weierstrass form, 
which is necessary to address fields of characteristic 2 and 3; see [2, III.1].1 

The key property of the j-invariant j(E) is that it characterizes E up to isomorphism 
over k̄. Before proving this we first note that every element of the field k is the j-invariant 
of an elliptic curve defined over k. 

Theorem 14.12. For every j0 ∈ k there is an elliptic curve E/k with j-invariant j(E) = j0. 

Proof. We assume char(k) 6= 2, 3; see [2, III.1.4.c] for a general proof. If j0 is 0 or 1728 we 
2 2 3may take E to be y = x3 +1 or y = x + x, respectively. Otherwise, let E/k be the elliptic 
2 3curve defined by y = x + Ax + B where 

A = 3j0(1728 − j0), 

B = 2j0(1728 − j0)
2 . 

We claim that j(A, B) = j0. We have 

4A3 

j(A, B) = 1728 
4A3 + 27B2 

4 · 33j03(1728 − j0)3 

= 1728 
4 · 33j3(1728 − j0)3 + 27 · 22j2(1728 − j0)4 

0 0 

j0
= 1728 

j0 + 1728 − j0 

= j0. 

We now give a necessary and suÿcient condition for two elliptic curves to be isomorphic. 
An isomorphism φ of elliptic curves is an invertible isogeny, equivalently, an isogeny of 

ˆdegree 1 (the dual isogeny gives an inverse isomorphism, since φφ̂ = φφ = 1). Recall from 
Lecture 5 that an isogeny between elliptic curves that are defined over k is assumed to be 
defined over k (hence representable by rational functions with coeÿcients in k), and we say 
that two elliptic curves are isogenous over an extension L of k to indicate that the isogeny 
is defined over L (strictly speaking, it is an isogeny between the base changes of the elliptic 
curves to L). As we saw in problem 3 of Problem Set 1, elliptic curves that are isomorphic 
over k̄ need not be isomorphic over k. 

2 3 2 3Theorem 14.13. Elliptic curves E : y = x + Ax + B and E0 : y = x + A0x + B0 defined 
over k are isomorphic (over k) if and only if A0 = µ4A and B0 = µ6B, for some µ ∈ k× . 

1As noted in the errata, there is a typo on p. 42 of [2]; the equation b2 = a1
2 −4a4 should read b2 = a1

2 −4a2. 
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Proof. Let φ : E → E0 be an isomorphism in standard form φ(x, y) = (r1(x), r2(x)y) with 
r1, r2 ∈ k(x). Since φ is an isomorphism, its kernel is trivial, so r1 and r2 must be polyno-
mials, by Lemma 5.22 and Corollary 5.23. Thus r1(x) = ax + b for some a, b ∈ k with a = 0. 
Substituting into the curve equation for E0, we have 

r2(x)
2 y 2 = (ax + b)3 + A0(ax + b) + B0 

3 r2(x)
2(x + Ax + B) = (ax + b)3 + A0(ax + b) + B0 . 

By comparing the degrees of the polynomials on both sides, we see that r2(x) must be 
2constant, say r2(x) = c. Comparing coeÿcients of x shows that b = 0, and comparing 

2coeÿcients of x3 shows that c = a3; thus a = (c/a)2 and c = (c/a)3. If we let µ = c/a ∈ k× 

then we have 
3 6 3 2 µ 6(x + Ax + B) = µ x + A0(µ x) + B0 , 

and it follows that A0 = µ4A and B0 = µ6B as claimed. 
Conversely, if A0 = µ4A and B0 = µ6B for some µ ∈ k∗, then the map φ : E → E0 

2 3defined by φ(x, y) = (µ x, µ y) is an isomorphism, since it is an isogeny of degree 1. 

We are now ready to prove the theorem stated at the beginning of this section. 

Theorem 14.14. Let E and E0 be elliptic curves over k. Then E and E0 are isomorphic 
¯over k if and only if j(E) = j(E0). If j(E) = j(E0) and the characteristic of k is not 2 

or 3 then there is a field extension K/k of degree at most 6, 4, or 2, depending on whether 
j(E) = 0, j(E) = 1728, or j(E) 6= 0, 1728, such that E and E0 are isomorphic over K. 

Remark 14.15. The first statement is true in characteristic 2 and 3 (see [2, III.1.4.b]), 
but the second statement is not; one may need to take K/k of degree up to 12 when k has 
characteristic 2 or 3. 

2 3 2 3Proof. We assume char(k) 6 = x + Ax + B and E0 : y = x + A0= 2, 3. Suppose E : y x + B0 

are isomorphic over k̄. For some µ ∈ k̄∗ we have A0 = µ4A and B0 = µ6B, by Theorem 14.13. 
We then have 

4(µ4A)3 4A3 

j(A0, B0) = = = j(A, B). 
4(µ4A)3 + 27(µ6B)2 4A3 + 27B2 

For the converse, suppose that j(A, B) = j(A0, B0) = j0. If j0 = 0 then A = A0 = 0 and 
we may choose µ ∈ K×, where K/k is an extension of degree at most 6, so that B0 = µ6B 
(and A0 = µ4A = 0). Similarly, if j0 = 1728 than B = 0 and we may choose µ ∈ K×, where 
K/k is an extension of degree at most 4, so that A0 = µ4A (and B0 = µ6B = 0). We may 
then apply Theorem 14.13 to show that E and E0 are isomorphic over K (by extending the 
field of definition of E and E0 from k to K). 

We now assume j0 6 , as in the = 0, 1728. Let A00 = 3j0(1728−j0) and B00 = 2j0(1728−j0)
2 

proof of Theorem 14.12, so that j(A00, B00) = j0. Plugging in j0 = 1728 · 4A3/(4A3 + 27B2), 
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we have � � 
4A3 4A3 

A00 = 3 · 1728 1728 − 1728 
4A3 + 27B2 4A3 + 27B2 � �2

4A3 · 27B2 2735AB 
= 3 · 17282 = A,

(4A3 + 27B2)2 4A3 + 27B2 � �2
4A3 4A3 

B00 = 2 · 1728 1728 − 1728 
4A3 + 27B2 4A3 + 27B2 � �3

4A3 · 272B4 2735AB 
= 2 · 17283 = B. 

(4A3 + 27B2)3 4A3 + 27B2 

Plugging in j0 = 1728 · 4A03/(4A03 + 27B02) yields analogous expressions for A00 and B00 in 
terms of A0 and B0. If we let � �� � 

2735AB 4A03 + 27B02 

u = ,
4A3 + 27B2 2735A0B0 

then A0 = u2A and B0 = u3B. We now choose µ ∈ K×, where K/k is an extension of degree 
2at most 2, so that we have µ = u. Then A0 = µ4A and B0 = µ6B and Theorem 14.13 

implies that E and E0 are isomorphic over K. 

Note that while j(E) = (A, B) always lies in the minimal field k containing A and B, 
the converse is not necessarily true. It could be that j(A, B) lies in a proper subfield of k 
(squares in A can cancel cubes in B, for example). In this case we can construct an elliptic 
curve E0 that is defined over the minimal subfield of k that contains j(E) such that E0 is 
isomorphic to E over k̄ (but not necessarily over k). 

14.3 Supersingular elliptic curves 

Theorem 14.16. Let E be a supersingular elliptic curve over a field k of characteristic 
p > 0. Then j(E) lies in F 2 (and possibly in Fp).p

2 3Proof. We assume E is defined by y = x + Ax + B and for any prime power q of p, 
2 3let E(q) denote the elliptic curve y = x + Aqx + Bq (one uses a general Weierstrass 

equation in characteristic 2 or 3). Let π be the p-power Frobenius isogeny from E to E(p). 
The endomorphism [p] = ππ has trivial kernel, since E is supersingular, so the isogeny ˆ
π̂ : E(p) → E has trivial kernel and must have inseparable degree p. By Corollary 6.4, we 
can decompose π̂ as π̂ = π̂sep ◦ π, where the separable isogeny π̂sep must have degree 1 and 
is therefore an isomorphism. 

We thus have 
[p] = ˆ ˆ π2 ,ππ = πsep

and it follows that π̂sep is an isomorphism from E(p2) to E. By Theorem 14.13 we have 

2 2 2 2 2 
j(E) = j(Ep ) = j(Ap , Bp ) = j(A, B)p = j(E)p . 

pThus j(E) is fixed by the automorphism σ : x 7→ x
2 of k. It follows that j(E) lies in 

the subfield of k fixed by σ, which is either F 2 or Fp, depending on whether k contains a p

quadratic extension of its prime field or not. In either case j(E) lies in F 2 .p
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Remark 14.17. Note that this theorem applies to any field k of characteristic p, not just 
finite fields. It implies that no matter what k is, the number of k̄-isomorphism classes of 

2supersingular elltipic curves is finite; there certainly cannot be more than p = #F 2 . Inp

fact, there are at most 12p + 1; see [2, Thm. V.4.1]. 

We can now characterize the endomorphism algebra of a supersingular elliptic curve. 

Theorem 14.18. Let E/k be a supersingular elliptic curve. Then End0(E) is a quaternion 
algebra. 

Proof. Suppose not. Then End(E) is isomorphic to Z or an order in or an imaginary √ 
quadratic field Q( D), where we may assume D < 0 is squarefree. We claim that in either 
case there are infinitely many odd primes ` with the property that End(E) contains no 
elements of degree ̀ . This is obvious when End(E) ' Z, since every integer endomorphism √ 
has square degree, so let us consider the case End0(E) ' Q( D). For any φ ∈ End(E) 
the discriminant of the characteristic polynomial x2 + (tr φ)x + deg φ of φ is an integer that 
must be a square in End(E), since it has φ as a root. If deg φ = ` then we must have 

(tr φ)2 − 4` = v 2D 

for some integer v, and this implies that D is a square modulo ̀ . By quadratic reciprocity, 
whether D is a square modulo ̀  or not depends only on the residue class of ̀  modulo 4D. For 
at least one of these residue classes, D is not a square modulo ̀ , and Dirichlet’s theorem on 
primes in arithmetic progressions implies that there are infinitely many primes for which D 
is not a square modulo ̀ . 

So let ̀  1, `2, . . . be an infinite sequence of primes di˙erent from p = char(k) for which 
End(E) contains no elements of degree ̀  i. For each ̀  i we may construct a separable isogeny 

¯φi : E → Ei of degree ̀  i defined over k whose kernel is a cyclic subgroup of order ̀  i contained 
in E[` i] using Vélu’s formulas (see Theorem 6.14). The elliptic curves Ei are all supersin-
gular, by Theorem 14.1, and Theorem 14.18 implies that only finitely many of them have 

∼¯distinct j-invariants. By Theorem 14.14, over k we must have an isomorphism α : Ei −→ Ej 

for some distinct i and j. Let us now consider the endomorphism φ := φ̂j ◦ α ◦ φi ∈ End(E) 
of degree ̀  i ̀  j . Since ̀  i ̀  j is not a square we cannot have End(E) ' Z, so End(E) is an order √ 
in Q( D). The discriminant (tr φ)2 − 4` i ̀  j is a square, and this implies that D must be a 
square modulo ̀  i (and ̀  j ), which is a contradiction. 

When k is a finite field, the converse of the Theorem 14.18 is implied by Theorem 14.5. 
In fact the converse holds for any field k, but we won’t prove this. For finite fields we have 
the following dichotomy. 

Corollary 14.19. The endomorphism algebra of an elliptic curve E over a finite field is 
either an imaginary quadratic field or a quaternion algebra, depending on whether E is 
ordinary or supersingular (respectively). 
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