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2 Elliptic curves as abelian groups 

In Lecture 1 we defined an elliptic curve as a smooth projective curve of genus 1 with a 
distinguished rational point. An equivalent definition is that an elliptic curve is an abelian 
variety of dimension one. An abelian variety is a smooth projective variety that is also a 
group, where the group operation is defined by rational functions (ratios of polynomials). 
Remarkably, these conditions (in particular, the fact that we are working with projective 
varieties) force the group to be commutative, which is why they are called abelian varieties. 

A variety is (roughly speaking) the zero locus of a set of polynomials, subject to an 
irreducibility condition. The precise definition won’t concern us here, it is enough to know 
that a variety of dimension one is a curve, so an abelian variety of dimension one is a smooth 
projective curve with a group structure specified by rational functions. We will prove in this 
lecture that elliptic curves are abelian varieties. In fact the converse holds, every abelian 
variety of dimension one is an elliptic curve, but we won’t prove this. 

As mentioned in the first lecture, it is possible to associate an abelian variety to any 
smooth projective curve; this abelian variety is called the Jacobian of the curve. The 
dimension of the Jacobian is equal to the genus of the curve, which means that Jacobian is 
typically a much more complicated object than the curve itself, which has dimension one. 
Writing explicit equations for the Jacobian as a projective variety is quite complicated in 
general, but for elliptic curves, the curve and its Jacobian both have dimension one, and in 
fact they are isomorphic as projective varieties. 

2.1 The group law for Weierstrass curves 

Recall from Lecture 1 that the group law for an elliptic curve defined by a Weierstrass 
equation is determined by the following rule: 

Three points on a line sum to zero, which is the point at infinity. 

For convenience we will assume we are working over a field k whose characteristic is not 2 or 
3, so that we may assume we are working with an elliptic curve E/k defined by a Weierstrass 
equation of the form 

E : y 2 = x 3 + Ax + B. 

2 3 2The case of a general Weierstrass equation y +a1xy+a3y = x +a2x +a4x+a6 is essentially 
the same, but the formulas are slightly more complicated; see [4, III.2.3] for details. 

Recall that although we typically may our curves using an aÿne equation in the variables 
x and y, we are really working with the corresponding projective curve, which in this case 
is given by the homogeneous equation 

2 3E : y z = x + Axz2 + Bz3 

In order to specify an elliptic curve we need not only an equation defining the curve, but 
also a distinguished rational point, which acts as the additive identity 0. For curves in 
Weierstrass form choose the point O := (0 : 1 : 0), which is the unique point on the curve E 
that lies on the line z = 0 at infinity: if z = 0 then x = 0 and we may assume y = 1 
after scaling the projective point (0 : y : 0) by 1/y (note that x = z = 0 forces y 6= 0; by 
definition, (0 : 0 : 0) is not a projective point) 

Every point P 6= 0 on the curve E thus has a nonzero z-coordinate which we can scale 
to be 1, and we use P = (x0, y0) := (x0 : y0 : 1) to such an aÿne point. Notice that the 
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point Q = (x0, −y0) also lies on the curve E, and the projective line through P and Q is 
defined by x = x0z, which also passes through O = (0 : 1 : 0). The three points P, Q, O lie 
on a line, so by the definition of the group law, P + Q + O = P + Q = O; thus Q = −P . 
We can also check that O acts as the identity element: the line between O and any point 
P intersects the curve at −P (this is a double intersection at a tangent when P = −P ). 
We then have O + P + (−P ) = O, so O + P = P . Commutativity of the group law follows 
immediately from our definition, so P + O = P also holds. 

Associativity is not obvious, and while it can be rigorously proven algebraically, this is 
a tedious task that does not yield much insight. So we will give two proofs. The first will 
only apply to the generic case but it is short and provides some explanation as to why the 
group operation is associative. The second will be algebraic and fully rigorous, but we will 
let Sage do all the dirty work for us. 

2.1.1 A geometric proof of associativity in the generic case 

This is an adaptation of the proof in [2, p. 28]. Let P , Q, R be three points on an elliptic 
curve E over a field k that we may assume is algebraically closed (if the group law is 

¯associative over k then it is certainly also associative when we restrict to k). We shall also 
assume that P , Q, R, and the zero point O are all in general position (this means that in the 
diagram below there are no relationships among the points other than those that necessarily 
exist by construction). 

The line ̀  0 through P and Q meets the curve E at a third point, −(P + Q), and the line 
m2 through O and −(P + Q) meets E at P + Q. Similarly, the line m0 through P and R 
meets E at −(P + R), and the line ̀  2 through O and −(P + R) meets E at P + R. Let S 
be the third point where the line ̀  1 through Q + P and R meets E, and let T be the third 
point where the line m1 through Q and P + R meets E. See the diagram below. 

m0 m1 m2 

O 
−(P + R) 

T 

P + R 

R S P + Q 

P Q −(P + Q) 

` 2 

` 1 

` 0 

We have S = −((Q + P ) + R) and T = −(Q + (P + R)). It suÿces to show S = T . 
Suppose not. Let g(x, y, z) be the cubic polynomial formed by the product of the lines 
` 0, `1, `2 in homogeneous coordinates, and similarly let h(x, y, z) = m0m1m2. We may 
assume g(T ) = 0 and h(S) 6 0, since the points are in general position and S =6 T . Thus 6 = 
g and h are linearly independent elements of the k-vector space V of homogeneous cubic � �

3+2polynomials in k[x, y, z]. The space V has dimension = 10, thus the subspace of 2 
homogeneous cubic polynomials that vanish at the eight points O, P , Q, R, ±(Q + P ), 
and ±(P + R) has dimension 2 and is spanned by g and h. The polynomial f(x, y, z) = 
3x + Axz2 + Bz3 − zy2 that defines E is a nonzero element of this subspace, so we may write 

f = ag + bh as a linear combination of g and h. Now f(S) = f(T ) = 0, since S and T are 
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both points on E, but g(S) = h(T ) = 0 and g(T ), h(S) = 06 , which implies that both a and 
b are zero. But this is a contradiction because f is not the zero polynomial. 

This completes our geometric proof of the group law (in the generic case). In order to give 
a completely general algebraic proof, and to be able to actually perform group operations 
explicitly, we need explicit formulas for computing the sum of two points. 

2.1.2 The group law in algebraic terms 

2 3Let P and Q be two points on our elliptic curve E : y = x + Ax + B. We want to 
compute the point R = P + Q by expressing the coordinates of R as rational functions of 
the coordinates of P and Q. If either P or Q is the point O at infinity, then R is simply 
the other point, so we assume that P and Q are aÿne points P = (x1, y1) and Q = (x2, y2). 
There are two cases. 

Case 1. x1 =6 x2. The line PQ has slope m = (y2 − y1)/(x2 − x1), which yields the linear 
equation y − y1 = m(x − x1) for PQ. This line is not vertical, so it intersects the curve 
E in a third aÿne point −R = (x3, −y3). Plugging the equation for the line PQ into the 
equation for the curve E yields 

3(m(x − x1) + y1)
2 = x + Ax + B. 

Expanding the LHS and moving every term to the RHS yields a cubic equation 

3 − m 2 2 g(x) := x x + · · · = 0, 

where the ellipsis hides lower order terms in x. The monic cubic polynomial g(x) has two 
roots x1, x2 ∈ k and therefore factors in k[x] as 

g(x) = (x − x1)(x − x2)(x − x3), 

where x3 ∈ k is the x-coordinate of the third point −R on the intersection of PQ and E. 
Comparing the coeÿcient of x2 in the two expressions above for g(x) shows that x1+x2+x3 = 
−m2, and therefore x3 = m2 − x1 − x2. We can then compute the y-coordinate −y3 of −R 
by plugging this expression for x3 into the equation for PQ, and we have 

m = (y2 − y1)/(x2 − x1), 

x3 = m 2 − x1 − x2, 

y3 = m(x1 − x3) − y1, 

which expresses the coordinates of R = P + Q as rational functions of the coordinates of 
P and Q as desired. To compute P + Q = R, we need to perform three multiplications 
(one of which is squaring m) and one inversion in the field k. We’ll denote this cost 3M+I; 
we are ignoring the cost of additions and subtractions because these are typically negligible 
compared to the cost of multiplications and (especially) inversions. 

Case 2. x1 = x2. We must have y1 = ±y2. If y1 = −y2 then Q = −P and P + Q = R = 0. 
Otherwise P = Q and R = 2P , and the line PQ is the tangent to P on the equation for E, 
whose slope we can compute by implicit di˙erentiation. This yields 

2y dy = 3x 2dx + A dx, 

18.783 Spring 2017, Lecture #2, Page 3 



so at the point P = (x1, y1) the slope of the tangent line is 
2dy 3x1 + A 

m = = ,
dx 2y1 

and once we know m we can compute x3 and y3 as above. Note that we require an extra 
multiplication (a squaring) to compute m, so computing R = 2P has a cost of 4M+I. 

Remark 2.1. You might object that we have not formally defined implicit di˙erentiation 
over an arbitrary field, nor have we shown that this gives us the slope of the tangent line. 
One can rigorously justify this (using Kahler di˙erentials, for example), but it is easy to 
verify that it works in our case: if you plug y = m(x − x1) + y1 into the curve equation 

2 3 2E : y = x + Ax + B using the slope m = (2x1 + A)/2y1 we computed using implicit 
di˙erentiation, you will find that x1 is a double root, and since the point (x1, −y1) does not 
lie on the line L : y = m(x − x1) + y1 unless y1 = 0, the point (x1, y1) has multiplicity 2 in 
the intersection E ∩ L, which implies that L is tangent to E at (x1, y1) as claimed. 

With these equations in hand, we can now prove associativity as a formal identity, 
treating x1, y1, z1, x2, y2, z2, x3, y3, z3, A, B as indeterminants subject to the three relations 
implied by the fact that P , Q, R lie on the curve E. See the Sage worksheet 

Lecture 2 Proof of associativity 

for details, which includes checking all the special cases. 
The equations above can be converted to projective coordinates by replacing x1, y1, x2, 

and y2 with x1/z1, y1/z1, x2/z2, and y2/z2 respectively, and then writing the resulting 
expressions for x3/z3 and y3/z3 with a common denominator. When P =6 Q we obtain 

x3 = (x2z1 − x1z2)((y2z1 − y1z2)
2 z1z2 − (x2z1 − x1z2)

2(x2z1 + x1z2)) 

y3 = (y2z1 − y1z2)((x2z1 − x1z2)
2(x2z1 + 2x1z2) − (y2z1 − y1z2)

2 z1z2) − (x2z1 − x1z2)
3 y1z2 

z3 = (x2z1 − x1z2)
3 z1z2 

and for P = Q we obtain 
2 2 2 x3 = 2y1z1(A

2(z1 + 3x1)
2 − 8x1y1z1) 

2 2 2 2 2 4 2 y3 = A(z1 + 3x1)(12x1y1z1 − A2(z1 + 3x1)
2) − 8y1 z1 

z3 = (2y1z1)
3 

These formulas are more complicated, but they have the advantage of avoiding inversions, 
which are more costly than multiplications (in a finite field of cryptographic size inversions 
may be 50 or even 100 times more expensive than multiplications). With careful reuse of 
common subexpressions these formulas lead to a cost of 12M for addition (of distinct points) 
and 14M for doubling. 

2.2 Edwards curves 

Many alternative representations of elliptic curves have been proposed over the years that 
lead to di˙erent formulas for the group law. We give just one example here, Edwards 
curves [1, 3], which have two significant advantages over Weierstrass equations. Let d be a 
non-square element of a field k whose characteristic is not 2. Then the equation 

2 2 x + y 2 = 1 + dx2 y (1) 

defines an elliptic curve with distinguished point (0, 1). 

18.783 Spring 2017, Lecture #2, Page 4 

https://cloud.sagemath.com/projects/bec670ef-3089-49ad-a790-f587e6579df9/files/18.783 Lecture 2 Proof of associativity.sagews


Remark 2.2. The plane projective curve defined by equation (1) has two singular points 
at infinity, violating our requirement that an elliptic curve be smooth. However, this plane 
curve can be desingularized by embedding it in P3(k). The points at infinity are then no 
longer rational, and do not play a role in the group operation on E(k), whose elements can 
all be uniquely represented as solutions (x, y) to equation (1) above. 

The group operation is given by � � 
x1y2 + x2y1 y1y2 − x1x2

(x3, y3) = , , (2)
1 + dx1x2y1y2 1 − dx1x2y1y2 

which implies that the inverse of (x1, y1) is (−x1, y1). In contrast to the formulas for curves 
in Weierstrass form, the formula in (2) is well defined for every pair of points (x1, y1) and 
(x2, y2) in E(k). 

To prove this, let us suppose for the sake of obtaining a contradiction that one the 
denominators in (2) is zero (making the formulas undefined). Then we must have 

2 2 2 2(1 + dx1x2y1y2)(1 − dx1x2y1y2) = 1 − d2 x1x2y1y2 = 0, 

2 2 2 2so d2x1x2y1y2 = 1, and therefore x1, x2, y1, y2 are all nonzero. Applying this and the curve 
equation (twice) yields 

2 2 2 2
2 + y2

2 

x1 + y1 = 1 + dx1
2 y1 = 1 + 

1 
= 

x
.2 2dx22y dx2 22 2y

By adding or subtracting 2x1y1 = ±2/(dx2y2) to both sides we can obtain 

(x2 ± y2)2 

(x1 ± y1)
2 = ,

dx2 2 
2y2 

with either choice of sign on the LHS (the sign on the RHS may vary, but in any case the 
numerator of the RHS is a square). Since x1 and y1 are nonzero, one of x1 + y1 and x1 − y1 

is nonzero, and this implies that d is a square in k, but this is a contradiction, since we 
assumed from the beginning that c is not a square. 

As written, the group law involves five multiplications and two inversions (ignoring the 
multiplication by d, which we can choose to be small), which is greater than the cost of the 
group operation in Weierstrass form. However, in projective coordinates we have 

x3 z1z2(x1y2 + x2y1) y3 z1z2(y1y2 − x1x2) 
= , = .2 2 2 2z3 z 2 + dx1x2y1y2 z1 z − dx1x2y1y21 z z3 2 

There are a bunch of common subexpressions here, and in order to compute z3, we need 
a common denominator. Let r = z1z2, let s = x1y2 + x2y1, let t = dx1y2x2y1, and let 
u = y1y2 − x1x2. We then have 

2 2 x3 = rs(r 2 − t), y3 = ru(r + t), z3 = (r + t)(r 2 − t). 

This yields a cost of 12M. If we compute s as s = (x1 + y1)(x2 + y2) − x1x2 − y1y2, the cost 
is reduced to 11M. 

A simple Sage implementation of these formulas can be found here: 

Lecture 2 Group law on Edwards curves 
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Because the expression in (2) is well-defined at every point in E(k), we do not need 
separate formulas for addition and doubling. Moreover, we don’t even need to check the 
cases where one or both points is the identity element, or one is the negation of the other, 
the same formula works in every case. Such formulas are said to be complete, and they have 
two distinct advantages. First, they can be implemented very eÿciently as a straight-line 
program with no branching. Second, they protect against what is known as a side-channel 
attack. If you are using di˙erent formulas for addition and doubling, it is possible that an 
adversary may be able to externally distinguish these cases, e.g. by monitoring the CPU 
(electronically, thermally, or even acoustically) and noticing the di˙erence in the time re-
quired or energy used by each operation. They can then use this information to break a 
cryptosystem that performs scalar multiplication nP by an integer n that is meant to be 
secret (as in Diÿe-Hellman key exchange, for example), because they can the sequence of 
doubling-add-adding used in scalar multiplication e˙ectively encodes the binary represen-
tation of n. Using a complete formulas prevents a side channel attack because exactly the 
same sequence of instruction is executed for every group operation. 

Having said that, if you know you want to double a point and are not concerned about a 
side-channel attack, there are several optimizations that can be made to the formulas above 

2 2(these include replacing 1 + dx2y with x + y2). This reduces the cost of doubling on an 
Edwards curves to 7M, half the 14M cost of doubling a point in Weierstrass coordinates. 

The explicit formulas database contains optimized formulas for Edwards curves and 
various generalizations, as well as many other forms of elliptic curves. Operation counts and 
verification scripts are provided with each set of formulas. 

We should note that, unlike Weierstrass equations, not every elliptic curve can be defined 
by an equation in Edwards form. In particular, an Edwards curve always has a rational point 
of order 4, the point (1, 0), but most elliptic curves do not have a rational point of order 4. 
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